Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Salman Sharifazari, Mahmood Sadat-Noori, Habibeh Rahimi, Danial Khojasteh, William Glamore. 2021: Optimal reservoir operation using Nash bargaining solution and evolutionary algorithms. Water Science and Engineering, 14(4): 260-268. doi: 10.1016/j.wse.2021.10.002
Citation: Salman Sharifazari, Mahmood Sadat-Noori, Habibeh Rahimi, Danial Khojasteh, William Glamore. 2021: Optimal reservoir operation using Nash bargaining solution and evolutionary algorithms. Water Science and Engineering, 14(4): 260-268. doi: 10.1016/j.wse.2021.10.002

Optimal reservoir operation using Nash bargaining solution and evolutionary algorithms

doi: 10.1016/j.wse.2021.10.002
  • Received Date: 2020-11-16
  • Accepted Date: 2021-08-30
  • Available Online: 2021-12-15
  • Optimizing reservoir operation is critical to ongoing sustainable water resources management. However, different stakeholders in reservoir management often have different interests and resource competition may provoke conflicts. Resource competition warrants the use of bargaining solution approaches to develop an optimal operational scheme. In this study, the Nash bargaining solution method was used to formulate an objective function for water allocation in a reservoir. Additionally, the genetic and ant colony optimization algorithms were used to achieve optimal solutions of the objective function. The Mahabad Dam in West Azerbaijan, Iran, was used as a case study site due to its complex water allocation requirements for multiple stakeholders, including agricultural, domestic, industrial, and environmental sectors. The relative weights of different sectors in the objective function were determined using a discrete kernel based on the priorities stipulated by the government (the Lake Urmia National Restoration Program). According to the policies for the agricultural sector, water allocation optimization for different sectors was carried out using three scenarios: (1) the current situation, (2) optimization of the cultivation pattern, and (3) changes to the irrigation system. The results showed that the objective function and the Nash bargaining solution method led to a water utility for all stakeholders of 98%. Furthermore, the two optimization algorithms were used to achieve the global optimal solution of the objective function, and reduced the failure of the domestic sector by 10% while meeting the required objective in water-limited periods. As the conflicts among stakeholders may become more common with a changing climate and an increase in water demand, these results have implications for reservoir operation and associated policies.

     

  • loading
  • Abbaspour, M., Nazaridoust, A., 2007. Determination of environmental water requirements of Lake Urmia, Iran: An ecological approach. Int. J. Environ. Stud. 64, 161-169. https://doi.org/10.1080/00207230701238416.
    Ahmed, J.A., Sarma, A.K., 2005. Genetic algorithm for optimal operating policy of a multipurpose reservoir. Water Resour. Manag. 19(2), 145-161. https://doi.org/10.1007/s11269-005-2704-7.
    Aly, A.H., Peralta, R.C., 1999. Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour. Res. 35(8), 2523-2532. https://doi.org/10.1029/98WR02368.
    Assaf, H., Beek, E., Borden, C., Gijsbers, P., Jolma, A., Kaden, S., Kaltofen, M., Labadie, J.W., Loucks, D.P., Quinn, N.W., et al., 2008. Generic simulation models for facilitating stakeholder involvement in water resources planning and management: A comparison, evaluation and identification of future needs. Developments in Integrated Environmental Assessment 3, 229-246. https://doi.org/10.1016/S1574-101X(08)00613-3.
    Foong, W.K., Simpson, A.R., Maier, H.R., 2008. Ant colony optimization for power plant maintenance scheduling optimization: A five-station hydropower system. Ann. Oper. Res. 159, 433-450. https://doi.org/10.1007/s10479-007-0277-y.
    Gholizadeh, M., Nabizadeh, E., Mahamadpur, O., Hosseini, M., 2017. Optimization of water quantity and quality in Mahabad River by SWAT model. Research in Marine Sciences 2(2), 112-129.
    Golfam, P., Ashofteh, P., Rajaee, T., Chu, X., 2019. Prioritization of water allocation for adaptation to climate change using multi-criteria decision making (MCDM). Water Resour. Manag. 33, 3401-3416. https://doi.org/10.1007/s11269-019-02307-7.
    Gudmundsson, J., Leth Hougaard, J., Ko, C.Y., 2018. River sharing: Implementation of efficient water consumption. SSRN Electronic Journal 3128889. https://doi.org/10.2139/ssrn.3128889.
    Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.
    Karamouz, M., Szidarovszky, F., Zahraie, B., 2003. Water Resources Systems Analysis. CRC Press, Boca Raton.
    Karamouz, M., Nazif, S., Sherafat, M.A., Zahmatkesh, Z., 2014. Development of an optimal reservoir operation scheme using extended evolutionary computing algorithms based on conflict resolution approach: A case study. Water Resour. Manag. 28(11), 3539-3554. https://doi.org/10.1007/s11269-014-0686-z.
    Kumar, D.N., Raju, K.S., Ashok, N., 2006. Optimal reservoir operation for irrigation of multiple crops using genetic algorithms. J. Irrigat. Drain. Eng. 132(2), 123-129. https://doi.org/10.1061/(ASCE)0733-9437.
    Kuo, J.T., Wang, Y.Y., Lung, W., 2006. A hybrid neural-genetic algorithm for reservoir water quality management. Water Res. 40, 1367-1376. https://doi.org/10.1016/j.watres.2006.01.046.
    Madadgar, S., Afshar, A., 2009. An improved continuous ant algorithm for optimization of water resources problems. Water Resour. Manag. 23(10), 2119-2139. https://doi.org/10.1007/s11269-008-9373-2.
    Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Ostfeld, A., 2014. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Software 62, 271-299. https://doi.org/10.1016/j.envsoft.2014.09.013.
    Nafarzadegan, A.R., Vagharfard, H., Nikoo, M.R., Nohegar, A., 2018. Socially-optimal and Nash Pareto-based alternatives for water allocation under uncertainty: An approach and application. Water Resour. Manag. 32(9), 2985-3000. https://doi.org/10.1007/s11269-018-1969-6.
    Najafi, P., 2007. Assessment of CropWat model accuracy for estimating potential evapotranspiration in arid and semi-arid region of Iran. Pakistan J. Biol. Sci. 10(16), 2665-2669. https://doi.org/10.3923/pjbs.2007.2665.2669.
    Nanda, S.J., Panda, G., 2014. A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary Computation 16, 1-18. https://doi.org/10.1016/j.swevo.2013.11.003.
    Nasri, B., Dadmehr, R., Fouché, O., 2015. Water table rising consecutive to surface irrigation in alluvial aquifers: Predective use of numerical modelling. In: Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G. (Eds.), Engineering Geology for Society and Territory e Volume 3. Springer, Cham, pp. 379-382. https://doi.org/10.1007/978-3-319-09054-2_79.
    Nazari-Sharabian, M., Taheriyoun, M., Ahmad, S., Karakouzian, M., Ahmadi, A., 2019. Water quality modelling of Mahabad Dam watershedereservoir system under climate change conditions, using SWAT and system dynamics. Water 11(2), 394. https://doi.org/10.3390/w11020394.
    Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., Zechman, E., 2010. State of the art for genetic algorithms and beyond in water resources planning and management. J. Water Resour. Plann. Manag. 136(4), 412-432. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000053.
    Ratner, B., Burnley, C., Mugisha, S., Madzudzo, E., Oeur, I., Mam, K., Rüttinger, L., Chilufya, L., Adriázola, P., 2018. Investing in multistakeholder dialogue to address natural resource competition and conflict. Developmnet in Practice 28, 799-812. https://doi.org/10.1080/09614524.2018.1478950.
    Sadat-Noori, M., Glamore, W., Khojasteh, D., 2020. Groundwater level prediction using genetic programming: The importance of precipitation data and weather station location on model accuracy. Environmental Earth Sciences 79(1), 37. https://doi.org/10.1007/s12665-019-8776-0.
    Safari, N., Zarghami, M., Szidarovszky, F., 2014. Nash bargaining and leaderefollower models in water allocation: Application to the Zarrinehrud River basin, Iran. Appl. Math. Model. 38(7-8), 1959-1968. https://doi.org/10.1016/j.apm.2013.10.018.
    Salimi, J., Maknoon, R., Meijerink, S., 2019. Designing institutions for watershed management: A case study of the Urmia lake restoration national committee. European Water Alternatives 12(2), 609-635.
    Singh, D.K., Jaiswal, C.S., Reddy, K.S., Singh, R.M., Bhandarkar, D.M., 2001. Optimal cropping pattern in a canal command area. Agric. Water Manag. 50(1), 1-8. https://doi.org/10.1016/S0378-3774(01)00104-4.
    Socha, K., Dorigo, M., 2008. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155-1173. https://doi.org/10.1016/j.ejor.2006.06.046.
    Srivastava, P., Singh, R.M., 2015. Optimization of cropping pattern in a canal command area using fuzzy programming approach. Water Resour. Manag. 29(12), 4481-4500. https://doi.org/10.1007/s11269-015-1071-2.
    Szemis, J.M., Dandy, G.C., Maier, H.R., 2013. A multiobjective ant colony optimization approach for scheduling environmental flow management alternatives with application to the River Murray, Australia. Water Resour. Res. 49(10), 6393-6411. https://doi.org/10.1002/wrcr.20518.
    Szemis, J.M., Maier, H.R., Dandy, G.C., 2014. An adaptive ant colony optimization framework for scheduling environmental flow management alternatives under varied environmental water availability conditions. Water Resour. Res. 50(10), 7606-7625. https://doi.org/10.1002/2013WR015187.
    Tavassoli, H.R., Tahershamsi, A., Acreman, M., 2014. Classification of natural flow regimes in Iran to support environmental flow management. Hydrol. Sci. J. 59(3-4), 517-529. https://doi.org/10.1080/02626667.2014.890285.
    Tennant, D.L., 1976. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1, 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO.
    Valipour,M.,2016.How do different factors impact agricultural water management? Open Agriculture 1(1), 89-111. https://doi.org/10.1515/opag-2016-0014.
    Valipour, M., 2017. Global experience on irrigation management under different scenarios. J. Water Land Dev. 32(1), 95-102. https://doi.org/10.1515/jwld-2017-0011.
    Varouchakis, E.A., Apostolakis, A., Siaka, M., Vasilopoulos, K., Tasiopoulos, A., 2017. Alternatives for domestic water tariff policy in the municipality of Chania, Greece, toward water saving using game theory. Water Pol. 20(1), 175-188. https://doi.org/10.2166/wp.2017.182.
    Yan, D., Yao, M., Ludwig, F., Ludwig, F., Kabat, P., Huang, H.Q., Hutjes, R.W.A., Werners, S.E., 2018. Exploring future water shortage for large river basins under different water allocation strategies. Water Resour. Manag. 32, 3071-3086. https://doi.org/10.1007/s11269-018-1975-8.
    Zecchin, A.C., Simpson, A.R., Maier, H.R., Marchi, A., Nixon, J.B., 2012. Improved understanding of the searching behavior of ant colony optimization algorithms applied to the water distribution design problem. Water Resour. Res. 48(9), W09505. https://doi.org/10.1029/2011WR011652.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (575) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return