Citation: | Xian-run Zhang, Dan-rong Zhang, Yuan Ding. 2021: An environmental flow method applied in small and medium-sized mountainous rivers. Water Science and Engineering, 14(4): 323-329. doi: 10.1016/j.wse.2021.10.003 |
Acreman, M., Dunbar, M.J., 2004. Defining environmental river flow requirements:A review. Hydrol. Earth Syst. Sci. 8(5), 861-876. https://doi.org/10.5194/hess-8-861-2004.
|
Caissie, J., Caissie, D., El-Jabi, N., 2015. Hydrologically based environmental flow methods applied to rivers in the Maritime provinces (Canada). River Res. Appl. 31(6), 651-662. https://doi.org/10.1002/rra.2772.
|
Chen, A., Weisbrod, N., 2016. Assessment of anthropogenic impact on the environmental flows of semi-arid watersheds:The case study of the lower Jordan River. In:Borchardt, D., Bogardi, J., Ibisch, R. (Eds.), Integrated Water Resources Management:Concept, Research and Implementation. Springer, Berlin, pp. 59-83. https://doi.org/10.1007/978-3-319-25071-7_3.
|
Chen, A., Wu, M., Wu, S., Sui, X., Wen, J., Wang, P., Cheng, L., Lanza, G.R., Liu, C., Jia, W., 2019. Bridging gaps between environmental flows theory and practices in China. Water Sci. Eng. 12(4), 284-292. https://doi.org/10.1016/j.wse.2019.12.002.
|
Chouaib, W., Caissie, D., 2021. Regional disparities in water availability and low flow conditions in rivers across Canada. J. Hydrol. 598, 1-16. https://doi.org/10.1016/j.jhydrol.2021.126195.
|
Efstratiadis, A., Tegos, A., Varveris, A., Koutsoyiannis, D., 2014. Assessment of environmental flows under limited data availability:Case study of the Acheloos River, Greece. Hydrol. Sci. J. 59(3-4), 731-750. https://doi.org/10.1080/02626667.2013.804625.
|
El-Jabi, N., Caissie, D., 2019. Characterization of natural and environmental flows in New Brunswick, Canada. River Res. Appl. 35(1), 14-24. https://doi.org/10.1002/rra.3387.
|
Espegren, G.D., 1996. Development of Instream Flow Recommendations in Colorado Using R2CROSS. Water Conservation Board, Denver.
|
Gippel, C.J., Stewardson, M.J., 1998. Use of wetted perimeter in defining minimum environmental flows. Regul. Rivers Res. Manag. 14(1), 53-67. https://doi.org/10.1002/(SICI)1099-1646(199801/02)14:1<53::AIDRRR476>3.0.CO;2-Z.
|
Karakoyun, Y., Dönmez, A.H., Yumurtaci, Z., 2018. Comparison of environmental flow assessment methods with a case study on a runoff riveretype hydropower plant using hydrological methods. Environ. Monit. Assess. 190, 722. https://doi.org/10.1007/s10661-018-7107-3.
|
Koutrakis, E.T., Triantafillidis, S., Sapounidis, A.S., Vezza, P., Kamidis, N., Sylaios, G., Comoglio, C., 2018. Evaluation of ecological flows in highly regulated rivers using the mesohabitat approach:A case study on the Nestos River, N. Greece. Ecohydrol. Hydrobiol. 19(4), 598-609. https://doi.org/10.1016/j.ecohyd.2018.01.002.
|
Kumar, A., Mishra, S.K., Pandey, R.P., 2018. Tennant concept coupled with standardized precipitation index for environmental flow prediction from rainfall. J. Hydrol. Eng. 23(2), 1-12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001605.
|
Leitner, P., Hauer, C., Graf, W., 2017. Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers:A case study at the Ziller River in Austria. Sci. Total Environ. 575, 112-118. https://doi.org/10.1016/j.scitotenv.2016.10.011.
|
Leszek, K., Agnieszka, W., Jacek, F., Maciej, W., Dariusz, M., Andrzej, W., 2019. Combined use of the hydraulic and hydrological methods to calculate the environmental flow, Wisloka river, Poland:Case study. Environ. Monit. Assess. 191, 254. https://doi.org/10.1007/s10661-019-7402-7.
|
Ma, R., 2006. Manual of Water Conservancy Engineering Design and Calculation. Water Resources and Hydropower Press, Beijing (in Chinese).
|
Oikonomou, P.D., Sidhu, R., Wible, T., Morrison, R.R., 2021. R2Cross:A web-based decision support tool for instream flows. J. Am. Water Resour. Assoc. 57(4), 652-660. https://doi.org/10.1111/1752-1688.12939.
|
Papadaki, C., Soulis, K., Ntoanidis, L., Zogaris, S., Dercas, N., Dimitriou, E., 2017. Comparative assessment of environmental flow estimation methods in a Mediterranean mountain river. Environ. Manag. 60, 280-292. https://doi.org/10.1007/s00267-017-0878-4.
|
Parasiewicz, P., 2007. The MesoHABSIM model revisited. River Res. Appl. 23, 893-903. https://doi.org/10.1002/rra.1045.
|
Parasiewicz, P., Prus, P., Suska, K., Marcinkowski, P., 2018. "E=mc2" of environmental flows:A conceptual framework for establishing a fishbiological foundation for a regionally applicable environmental low-flow formula. Water 10(11), 1501-1520. https://doi.org/10.3390/w10111501.
|
Parker, G.W., Armstrong, D.S., Richards, T.A., 2004. Comparison of Methods for Determining Streamflow Requirements for Aquatic Habitat Protection at Selected Sites on the Assabet and Charles Rivers, Eastern Massachusetts, 2000-02. U.S. Geological Survey Scientific Investigations Report 2004-5092. U.S. Geological Survey, Denver.
|
Petts, G.E., 2009. Instream flow science for sustainable river management. J. Am. Water Resour. Assoc. 45(5), 1071-1086. https://doi.org/10.1111/j.1752-1688.2009.00360.x.
|
Piniewski, M., Acreman, M.C., Stratford, C.J., Okruszko, T., Giełczewski, M., Teodorowicz, M., Rycharski, M., O swiecimska-Piasko, Z., 2011. Estimation of environmental flows in semi-natural lowland rivers e The Narew Basin case study. Pol. J. Environ. Stud. 20(5), 1281-1293.
|
Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., 2010. The ecological limits of hydrologic alteration (ELOHA):A new framework for developing regional environmental flow standards. Freshw. Biol. 155(1), 147-170. https://doi.org/10.1111/j.1365-2427.2009.02204.x.
|
Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10(4), 1163-1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x.
|
Sarah, P., Cehong, L., Bennett, B., Andrew, E., 2018. Evaluation of low-flow metrics as environmental instream flow standards during long-term average and 2016 drought conditions:Tombigbee River Basin, Alabama and Mississippi, USA. Water Pol. 20(6), 1240-1255. https://doi.org/10.2166/wp.2018.023.
|
Solans, M.A., Jal on, D., 2016. Basic tools for setting environmental flows at the regional scale:Application of the ELOHA framework in a Mediterranean river basin. Ecohydrology 9(8), 1517-1538. https://doi.org/10.1002/eco.1745.
|
Stamou, A., Polydera, A., Papadonikolaki, G., Martínez-Capel, F., MuñozMas, R., Papadaki, C., Zogaris, S., Bui, M.D., Rutschmann, P., Dimitriou, E., 2018. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manag. 209, 273-285. https://doi.org/10.1016/j.jenvman.2017.12.038.
|
Tare, V., Gurjar, S.K., Mohanta, H., Kapoor, V., Modi, A., Mathur, R.P., Sinha, R., 2017. Eco-geomorphological approach for environmental flows assessment in monsoon-driven highland rivers:A case study of upper Ganga, India. J. Hydrol.:Reg. Stud. 13, 110-121. https://doi.org/10.1016/j.ejrh.2017.07.005.
|
Tennant, D.L., 1976. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1(4), 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2.
|
Tharme, R., 2003. A global perspective on environmental flow assessment:Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19(5-6), 397-441. https://doi.org/10.1002/rra.736.
|
Theodoropoulos, C., Georgalas, S., Mamassis, N., Stamou, A., Rutschmann, P., Skoulikidis, N., 2018a. Comparing environmental flow scenarios from hydrological methods, legislation guidelines, and hydrodynamic habitat models downstream of the Marathon Dam (Attica, Greece). Ecohydrology 11(8), 1-11. https://doi.org/10.1002/eco.2019.
|
Theodoropoulos, C., Skoulikidis, N., Rutschmann, P., Stamou, A., 2018b. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538-547. https://doi.org/10.1002/rra.3284.
|
Vezza, P., Muñoz-Mas, R., Martínez-Capel, F., Mouton, A., 2015. Random forests to evaluate biotic interactions in fish distribution models. Environ. Model. Software 67, 173-183. https://doi.org/10.1016/j.envsoft.2015.01.005.
|
Ye, Z., Shen, Y., Chen, Y., 2012. Multiple methods for calculating minimum ecological flux of the desiccated lower Tarim River, Western China. Ecohydrology 6(6), 1040-1047. https://doi.org/10.1002/eco.1337.
|
Yin, X.A., Yang, Z., Zhang, E., Cai, Y., Yang, W., 2018. A new method of assessing environmental flows in channelized urban rivers. Engineering 4(5), 590-596. https://doi.org/10.1016/j.eng.2018.08.006.
|