Volume 14 Issue 4
Dec.  2021
Turn off MathJax
Article Contents
Xian-run Zhang, Dan-rong Zhang, Yuan Ding. 2021: An environmental flow method applied in small and medium-sized mountainous rivers. Water Science and Engineering, 14(4): 323-329. doi: 10.1016/j.wse.2021.10.003
Citation: Xian-run Zhang, Dan-rong Zhang, Yuan Ding. 2021: An environmental flow method applied in small and medium-sized mountainous rivers. Water Science and Engineering, 14(4): 323-329. doi: 10.1016/j.wse.2021.10.003

An environmental flow method applied in small and medium-sized mountainous rivers

doi: 10.1016/j.wse.2021.10.003
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 51579067).

  • Received Date: 2021-07-16
  • Accepted Date: 2021-09-05
  • Available Online: 2021-12-15
  • In small and medium-sized mountainous rivers, there are usually hydropower stations in upper reaches as well as widened and heightened river sections in downstream reaches that are close to settlements. The environmental flow (EF) ensures river connectivity and the survival of aquatic organisms. The Tennant and wetted perimeter methods were used to calculate the minimum EF, and the R2CROSS criteria were used to evaluate the rationality of hydraulic parameters. The result shows that downstream areas with large cross-sections may suffer from shallow water depths, insufficient wetted perimeters, and poor overall connectivity of the water bodies, even under the standard EF discharges. A novel method was proposed to ensure EF and sustain suitable hydraulic conditions. The minimum EF calculated by the Tennant method is adopted as the design flow, and a small trapezoidal trough channel is excavated on the wide riverbed of an artificial river section. The width and depth of the small channel are calculated with Manning's equation. As a study case, this method was applied in the Fenglingang River in Zhejiang Province of China. A trapezoidal groove with a depth of 0.74 m and a bottom width of 0.52 m was excavated in the center of Fenglingang River to sustain EF and maintain river connectivity. This small channel not only prevents the river from cutoff, but also enables the water depth and wetted perimeter to meet the demand of aquatic organisms.

     

  • loading
  • Acreman, M., Dunbar, M.J., 2004. Defining environmental river flow requirements:A review. Hydrol. Earth Syst. Sci. 8(5), 861-876. https://doi.org/10.5194/hess-8-861-2004.
    Caissie, J., Caissie, D., El-Jabi, N., 2015. Hydrologically based environmental flow methods applied to rivers in the Maritime provinces (Canada). River Res. Appl. 31(6), 651-662. https://doi.org/10.1002/rra.2772.
    Chen, A., Weisbrod, N., 2016. Assessment of anthropogenic impact on the environmental flows of semi-arid watersheds:The case study of the lower Jordan River. In:Borchardt, D., Bogardi, J., Ibisch, R. (Eds.), Integrated Water Resources Management:Concept, Research and Implementation. Springer, Berlin, pp. 59-83. https://doi.org/10.1007/978-3-319-25071-7_3.
    Chen, A., Wu, M., Wu, S., Sui, X., Wen, J., Wang, P., Cheng, L., Lanza, G.R., Liu, C., Jia, W., 2019. Bridging gaps between environmental flows theory and practices in China. Water Sci. Eng. 12(4), 284-292. https://doi.org/10.1016/j.wse.2019.12.002.
    Chouaib, W., Caissie, D., 2021. Regional disparities in water availability and low flow conditions in rivers across Canada. J. Hydrol. 598, 1-16. https://doi.org/10.1016/j.jhydrol.2021.126195.
    Efstratiadis, A., Tegos, A., Varveris, A., Koutsoyiannis, D., 2014. Assessment of environmental flows under limited data availability:Case study of the Acheloos River, Greece. Hydrol. Sci. J. 59(3-4), 731-750. https://doi.org/10.1080/02626667.2013.804625.
    El-Jabi, N., Caissie, D., 2019. Characterization of natural and environmental flows in New Brunswick, Canada. River Res. Appl. 35(1), 14-24. https://doi.org/10.1002/rra.3387.
    Espegren, G.D., 1996. Development of Instream Flow Recommendations in Colorado Using R2CROSS. Water Conservation Board, Denver.
    Gippel, C.J., Stewardson, M.J., 1998. Use of wetted perimeter in defining minimum environmental flows. Regul. Rivers Res. Manag. 14(1), 53-67. https://doi.org/10.1002/(SICI)1099-1646(199801/02)14:1<53::AIDRRR476>3.0.CO;2-Z.
    Karakoyun, Y., Dönmez, A.H., Yumurtaci, Z., 2018. Comparison of environmental flow assessment methods with a case study on a runoff riveretype hydropower plant using hydrological methods. Environ. Monit. Assess. 190, 722. https://doi.org/10.1007/s10661-018-7107-3.
    Koutrakis, E.T., Triantafillidis, S., Sapounidis, A.S., Vezza, P., Kamidis, N., Sylaios, G., Comoglio, C., 2018. Evaluation of ecological flows in highly regulated rivers using the mesohabitat approach:A case study on the Nestos River, N. Greece. Ecohydrol. Hydrobiol. 19(4), 598-609. https://doi.org/10.1016/j.ecohyd.2018.01.002.
    Kumar, A., Mishra, S.K., Pandey, R.P., 2018. Tennant concept coupled with standardized precipitation index for environmental flow prediction from rainfall. J. Hydrol. Eng. 23(2), 1-12. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001605.
    Leitner, P., Hauer, C., Graf, W., 2017. Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers:A case study at the Ziller River in Austria. Sci. Total Environ. 575, 112-118. https://doi.org/10.1016/j.scitotenv.2016.10.011.
    Leszek, K., Agnieszka, W., Jacek, F., Maciej, W., Dariusz, M., Andrzej, W., 2019. Combined use of the hydraulic and hydrological methods to calculate the environmental flow, Wisloka river, Poland:Case study. Environ. Monit. Assess. 191, 254. https://doi.org/10.1007/s10661-019-7402-7.
    Ma, R., 2006. Manual of Water Conservancy Engineering Design and Calculation. Water Resources and Hydropower Press, Beijing (in Chinese).
    Oikonomou, P.D., Sidhu, R., Wible, T., Morrison, R.R., 2021. R2Cross:A web-based decision support tool for instream flows. J. Am. Water Resour. Assoc. 57(4), 652-660. https://doi.org/10.1111/1752-1688.12939.
    Papadaki, C., Soulis, K., Ntoanidis, L., Zogaris, S., Dercas, N., Dimitriou, E., 2017. Comparative assessment of environmental flow estimation methods in a Mediterranean mountain river. Environ. Manag. 60, 280-292. https://doi.org/10.1007/s00267-017-0878-4.
    Parasiewicz, P., 2007. The MesoHABSIM model revisited. River Res. Appl. 23, 893-903. https://doi.org/10.1002/rra.1045.
    Parasiewicz, P., Prus, P., Suska, K., Marcinkowski, P., 2018. "E=mc2" of environmental flows:A conceptual framework for establishing a fishbiological foundation for a regionally applicable environmental low-flow formula. Water 10(11), 1501-1520. https://doi.org/10.3390/w10111501.
    Parker, G.W., Armstrong, D.S., Richards, T.A., 2004. Comparison of Methods for Determining Streamflow Requirements for Aquatic Habitat Protection at Selected Sites on the Assabet and Charles Rivers, Eastern Massachusetts, 2000-02. U.S. Geological Survey Scientific Investigations Report 2004-5092. U.S. Geological Survey, Denver.
    Petts, G.E., 2009. Instream flow science for sustainable river management. J. Am. Water Resour. Assoc. 45(5), 1071-1086. https://doi.org/10.1111/j.1752-1688.2009.00360.x.
    Piniewski, M., Acreman, M.C., Stratford, C.J., Okruszko, T., Giełczewski, M., Teodorowicz, M., Rycharski, M., O swiecimska-Piasko, Z., 2011. Estimation of environmental flows in semi-natural lowland rivers e The Narew Basin case study. Pol. J. Environ. Stud. 20(5), 1281-1293.
    Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., 2010. The ecological limits of hydrologic alteration (ELOHA):A new framework for developing regional environmental flow standards. Freshw. Biol. 155(1), 147-170. https://doi.org/10.1111/j.1365-2427.2009.02204.x.
    Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10(4), 1163-1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x.
    Sarah, P., Cehong, L., Bennett, B., Andrew, E., 2018. Evaluation of low-flow metrics as environmental instream flow standards during long-term average and 2016 drought conditions:Tombigbee River Basin, Alabama and Mississippi, USA. Water Pol. 20(6), 1240-1255. https://doi.org/10.2166/wp.2018.023.
    Solans, M.A., Jal on, D., 2016. Basic tools for setting environmental flows at the regional scale:Application of the ELOHA framework in a Mediterranean river basin. Ecohydrology 9(8), 1517-1538. https://doi.org/10.1002/eco.1745.
    Stamou, A., Polydera, A., Papadonikolaki, G., Martínez-Capel, F., MuñozMas, R., Papadaki, C., Zogaris, S., Bui, M.D., Rutschmann, P., Dimitriou, E., 2018. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manag. 209, 273-285. https://doi.org/10.1016/j.jenvman.2017.12.038.
    Tare, V., Gurjar, S.K., Mohanta, H., Kapoor, V., Modi, A., Mathur, R.P., Sinha, R., 2017. Eco-geomorphological approach for environmental flows assessment in monsoon-driven highland rivers:A case study of upper Ganga, India. J. Hydrol.:Reg. Stud. 13, 110-121. https://doi.org/10.1016/j.ejrh.2017.07.005.
    Tennant, D.L., 1976. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1(4), 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2.
    Tharme, R., 2003. A global perspective on environmental flow assessment:Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19(5-6), 397-441. https://doi.org/10.1002/rra.736.
    Theodoropoulos, C., Georgalas, S., Mamassis, N., Stamou, A., Rutschmann, P., Skoulikidis, N., 2018a. Comparing environmental flow scenarios from hydrological methods, legislation guidelines, and hydrodynamic habitat models downstream of the Marathon Dam (Attica, Greece). Ecohydrology 11(8), 1-11. https://doi.org/10.1002/eco.2019.
    Theodoropoulos, C., Skoulikidis, N., Rutschmann, P., Stamou, A., 2018b. Ecosystem-based environmental flow assessment in a Greek regulated river with the use of 2D hydrodynamic habitat modelling. River Res. Appl. 34(6), 538-547. https://doi.org/10.1002/rra.3284.
    Vezza, P., Muñoz-Mas, R., Martínez-Capel, F., Mouton, A., 2015. Random forests to evaluate biotic interactions in fish distribution models. Environ. Model. Software 67, 173-183. https://doi.org/10.1016/j.envsoft.2015.01.005.
    Ye, Z., Shen, Y., Chen, Y., 2012. Multiple methods for calculating minimum ecological flux of the desiccated lower Tarim River, Western China. Ecohydrology 6(6), 1040-1047. https://doi.org/10.1002/eco.1337.
    Yin, X.A., Yang, Z., Zhang, E., Cai, Y., Yang, W., 2018. A new method of assessing environmental flows in channelized urban rivers. Engineering 4(5), 590-596. https://doi.org/10.1016/j.eng.2018.08.006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (3227) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return