Citation: | Hao Gu, Meng Yang, Chong-shi Gu, Xiao-fei Huang. 2021: A factor mining model with optimized random forest for concrete dam deformation monitoring. Water Science and Engineering, 14(4): 330-336. doi: 10.1016/j.wse.2021.10.004 |
Adanur, S., Altunisik, A., Soyluk, K., 2016. Stochastic response of suspension bridges for various spatial variability models. Steel Compos. Struct. 22(5), 1001-1018. https://doi.org/10.1007/978-1-4020-5401-3_1.
|
Auret, L., Aldrich, C., 2010. Change point detection in time series data with random forests. Control Eng. Pract. 18(8), 990-1002. https://doi.org/10.1016/j.conengprac.2010.04.005.
|
Bacchelli, A., Mocci, A., Cleve, A., Lanza, M., 2017. Mining structured data in natural language artifacts with island parsing. Sci. Comput. Program. 150, 31-55. https://doi.org/10.1016/j.scico.2017.06.009.
|
Breiman, L., 1996. Bagging predictors. Mach. Learn. 24(2), 123-140. https://doi.org/10.1023/A:1018054314350.
|
Dempster, A., Chiu, W., 2006. Dempster-Shafer models for object recognition and classification. Int. J. Intell. Syst. 21(3), 283-297. https://doi.org/10.1002/int.20135.
|
Diaz-Uriarte, R., Andres, S., 2006. Gene selection and classification of microarray data using random forest. BMC Bioinf. 7, 1-3. https://doi.org/10.1186/1471-2105-7-3.
|
Dutta, I., Dutta, S., Raahemi, B., 2017. Detecting financial restatements using data mining techniques. Expert Syst. Appl. 90, 374-393. https://doi.org/10.1016/j.eswa.2017.08.030.
|
Gu, C., Su, H., 2015. Review of research on long-term service and risk assessment of concrete dam engineering. Scientific and Technological Progress in Water Conservancy and Hydropower 35(5), 1-12 (in Chinese).
|
Ho, T., 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832-844. https://doi.org/10.1109/34.709601.
|
Jaan, H., Awesar, H., Guo, Y.K., Nikolaos, V., 2019. Submerged flexible vegetation impact on open channel flow velocity distribution:An analytical modelling study on drag and friction. Water Sci. Eng. 12(2), 121-128. https://doi.org/10.1016/j.wse.2019.06.003.
|
Lee, S., Kouzani, A., Hub, E., 2010. Random forest based lung nodule classification aided by clustering. Comput. Med. Imag. Graph. 34(7), 535-542. https://doi.org/10.1016/j.compmedimag.2010.03.006.
|
Li, X., Ye, Y., 2006. Rough set method for excavation of main causes of cracks in hydraulic concrete structures. J. Southeast Univ. (Nat. Sci. Ed.) S2, 145-149 (in Chinese).
|
Ma, Z., Zhu, W., Han, S., Li, Z., 2010. Concrete crack genesis mining based on fuzzy neural network. J. Hydraul. Eng. 37(3), 33-35 (in Chinese). https://doi.org/10.3969/j.issn.2095-008X.2010.03.009.
|
Ma, S., Wang, Z., Zhang, M., 2004. Analysis of landslide monitoring data based on association rule mining. J. Yangtze River Sci. Res. Inst. 21(5), 48-51 (in Chinese). https://doi.org/10.3969/j.issn.1001-5485.2004.05.014.
|
Parkhurst, D., Brenner, K., Dufour, A., 2005. Indicator bacteria at five swimming beaches:Analysis using random forests. Water Res. 39(7), 1354-1360. https://doi.org/10.1016/j.watres.2005.01.001.
|
Perdiguero-Alonso, D., Montero, F., Kostadinova, A., 2008. Random forests, a novel approach for discrimination of fish populations using parasites as biological tags. Int. J. Parasitol. 38(12), 1425-1434. https://doi.org/10.1016/j.ijpara.2008.04.007.
|
Peters, J., Baets, B., Verhoest, N.E.C., Samson, R., Degroeve, S., Becker, P.D., Huybrechts, W., 2007. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 207(2-4), 304-318. https://doi.org/10.1016/j.ecolmodel.2007.05.011.
|
Xu, P., Jelinek, F., 2007. Random forests and the data sparseness problem in language modeling. Comput. Speech Lang. 21(1), 105-152. https://doi.org/10.1016/j.csl.2006.01.003.
|
Yu, P., 2008. Study on the cause of cracks in concrete dam based on the fusion of rough set and neural network. Yangtze River 39(16), 55-57 (in Chinese). https://doi.org/10.3969/j.issn.1001-4179.2008.16.020.
|