Citation: | Li-na Chen, Zi-long Zhao, Guo-mian Guo, Jiang Li, Wen-bo Wu, Fang-xiu Zhang, Xiang Zhang. 2022: Effects of muddy water irrigation with different sediment gradations on nitrogen transformation in agricultural soil of Yellow River Basin. Water Science and Engineering, 15(3): 228-236. doi: 10.1016/j.wse.2021.12.005 |
[1] |
Agehara, S., Warncke, D.D., 2005. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Science Society of America Journal 69(6), 1844-1855. https://doi.org/10.2136/sssaj2004.0361
|
[2] |
Asadishad, B., Chahal, S., Akbari, A., Cianciarelli, V., Azodi, M., Ghoshal, S., Tufenkji, N., 2018. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environmental Science & Technology 52(4), 1908-1918. https://doi.org/10.1021/acs.est.7b05389
|
[3] |
Aseab, C., Sra, C., Asme, D., Nac, M., Ma, E., Jza, C., Zca, C., 2020. Do soil property variations affect dicyandiamide efficiency in inhibiting nitrification and minimizing carbon dioxide emissions? Ecotoxicology and Environmental Safety 202, 110875. https://doi.org/10.1016/j.ecoenv.2020.110875
|
[4] |
Baran, A., Tarnawski, M., Urbaniak, M., 2019. An assessment of bottom sediment as a source of plant nutrients and an agent for improving soil properties. Environmental Engineering and Management Journal 18(8), 1647-1656. https://doi.org/10.30638/eemj.2019.155
|
[5] |
Bennett, S., 2012. The influence of agricultural trade and livestock production on the global phosphorus cycle. Ecosystems 15, 256-268. https://doi.org/10.1007/s10021-011-9507-x
|
[6] |
Bertrand, I., Delfosse, O., Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry 39(1), 276-288. https://doi.org/10.1016/j.soilbio.2006.07.016
|
[7] |
Bian, Y.L., Cao, H.T., Zhang, H.M., Huang, F.G., Song, C.J., 2018. An experimental study of muddy water infiltration affected by sediment concentration and size. Water Saving Irrigation (11), 39-47 (in Chinese). https://doi.org/10.3969/j.issn.1007-4929.2018.11.009
|
[8] |
Breuer, L., Kiese, R., Butterbach-Bahl, K., 2002. Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Science Society of America Journal 66(3), 834-844. https://doi.org/10.2136/sssaj2002.8340
|
[9] |
Briones, A.M., Okabe, S., Umemiya, Y., Ramsing, N.B., Reichardt, W., Okuyama, H., 2003. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil 250(2), 335-348. https://doi.org/10.1023/A:1022897621223
|
[10] |
Broadbent, F.E., Nakashima, T., 1967. Reversion of fertilizer nitrogen in soils. Soil Science Society of America Journal 31(5), 648-652. https://doi.org/10.2136/sssaj1967.03615995003100050013x
|
[11] |
Bronick, C.J., Lal, R., 2005. Soil structure and management: A review. Geoderma 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
|
[12] |
Burns, R.G., 1982. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Biology and Biochemistry 14(5), 423-427. https://doi.org/10.1016/0038-0717(82)90099-2
|
[13] |
Cai, Z., Gao, S., Hendratna, A., Duan, Y., Xu, M., Hanson, B.D., 2016. Key factors, soil nitrogen processes, and nitrite accumulation affecting nitrous oxide emissions. Soil Science Society of America Journal 80(6), 1560-1571. https://doi.org/10.2136/sssaj2016.03.0089
|
[14] |
Carrara, J.E., Walter, C.A., Freedman, Z.B., Hostetler, A.N., Hawkins, J.S., Fernandez, I.J., Brzostek, E.R., 2021. Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal-dominated soils. Global Change Biology 27(10), 2049-2060. https://doi.org/10.1111/gcb.15523
|
[15] |
Chang, E.H., Chung, R.S., Tsai, Y.H., 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition 53(2), 132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x
|
[16] |
Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., Xu, J., 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology 26(9), 5267-5276. https://doi.org/10.1111/gcb.15211
|
[17] |
Dick, R.P., Breakwell, D.P., Turco, R.F., 1997. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods for Assessing Soil Quality 49, 247-271. https://doi.org/10.2136/sssaspecpub49.c15
|
[18] |
Fu, M.H., Xu, X.C., Tabatabai, M.A., 1987. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils 5(2), 115-119. https://doi.org/10.1007/BF00257645
|
[19] |
Guntinas, M.E., Gil-Sotres, F., Leiros, M.C., Trasar-Cepeda, C., 2013. Sensitivity of soil respiration to moisture and temperature. Journal of Soil Science and Plant Nutrition 13(2), 445-461. https://doi.org/10.4067/S0718-95162013005000035
|
[20] |
Hankinson, T.R., Schmidt, E.L., 1988. An acidophilic and a neutrophilic nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Applied and Environmental Microbiology 54(6), 1536-1540. https://doi.org/10.1128/aem.54.6.1536-1540.1988
|
[21] |
Hargreaves, P.R., Baker, K.L., Graceson, A., Bonnett, S.A.F., Ball, B.C., Cloy, J.M., 2021. Use of a nitrification inhibitor reduces nitrous oxide (N2O) emissions from compacted grassland with different soil textures and climatic conditions. Agriculture, Ecosystems & Environment 310, 107307. https://doi.org/10.1016/j.agee.2021.107307
|
[22] |
He, X., Yin, H., Fang, C., Xiong, J., Huang, G., 2021. Metagenomic and q-PCR analysis reveals the effect of powder bamboo biochar on nitrous oxide and ammonia emissions during aerobic composting. Bioresource Technology 323, 124567. https://doi.org/10.1016/j.biortech.2020.124567
|
[23] |
Hu, R., Wang, X.P., Pan, Y.X., Zhang, Y.F., Zhang, H., 2014. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. European Journal of Soil Biology 62, 66-73. https://doi.org/10.1016/j.ejsobi.2014.02.008
|
[24] |
Hu, Y.Q., 2018. Review and development strategy of irrigation with unconventional water resources in China. Strategic Study of Chinese Academy of Engineering 20(5), 69-76 (in Chinese). https://doi.org/10.15302/J-SSCAE-2018.05.011
|
[25] |
Huang, P., Zhang, J., Zhu, A., Xin, X., Zhang, C., Ma, D., Yang, S., Mirza, Z., Wu, S., 2015. Coupled water and nitrogen (N) management as a key strategy for the mitigation of gaseous N losses in the Huang-Huai-Hai Plain. Biology and Fertility of Soils 51(3), 333-342. https://doi.org/10.1007/s00374-014-0981-0
|
[26] |
Huang, S.H., Lu, J., Tian, G.M., 2005. Effects of cracks and some key factors on emissions of nitrous oxide in paddy fields. Journal of Environmental Sciences 17(1), 37-42. https://doi.org/10.3321/j.issn:1001-0742.2005.01.007
|
[27] |
Isobe, K., Koba, K., Otsuka, S., Senoo, K., 2011. Nitrification and nitrifying microbial communities in forest soils. Journal of Forest Research 16(5), 351-362. https://doi.org/10.1007/s10310-011-0266-5
|
[28] |
Jat, H.S., Datta, A., Choudhary, M., Sharma, P.C., Dixit, B., Jat, M.L., 2021. Soil enzymes activity: Effect of climate smart agriculture on rhizosphere and bulk soil under cereal based systems of north-west India. European Journal of Soil Biology 103, 103292. https://doi.org/10.1016/j.ejsobi.2021.103292
|
[29] |
Kaden, U.S., Fuchs, E., Geyer, S., Hein, T., Horchler, P., Rupp, H., Weigelhofer, G., 2021. Soil characteristics and hydromorphological patterns control denitrification at the floodplain scale. Front. Earth Sci. 9, 708707. https://doi.org/10.3389/feart.2021.708707
|
[30] |
Kuypers, M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16(5), 263-276. https://doi.org/10.1038/nrmicro.2018.9
|
[31] |
Lan, T., Han, Y., 2013. Relationships of fertilizer-N use efficiency with gross N nitrification and mineralization rates in two different paddy soils. Acta Pedologica Sinica 50(6), 1154-1161 (in Chinese). https://doi.org/10.1111/1556-4029.12111
|
[32] |
Lüdemann, H., Arth, I., Liesack, W., 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology 66(2), 754-762. https://doi.org/10.1128/AEM.66.2.754-762.2000
|
[33] |
Mao, W., Sun, Y., 2011. Sediment, soil and environment linkages in the Yellow River Delta: A search for sustainable sediment resource management. In: Proceedings of 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 1699-1705, IEEE. https://doi.org/10.1109/CDCIEM.2011.234
|
[34] |
Mao, W., Kang, S., Wan, Y., Sun, Y., Li, X., Wang, Y., 2016. Yellow river sediment as a soil amendment for amelioration of saline land in the yellow river delta. Land Degradation & Development 27(6), 1595-1602. https://doi.org/10.1002/ldr.2323
|
[35] |
Mosier, A.R., Doran, J.W., Freney, J.R., 2002. Managing soil denitrification. Journal of Soil and Water Conservation 57(6), 505-512. https://doi.org/10.2307/4004006
|
[36] |
Osunbitan, J.A., Oyedele, D.J., Adekalu, K.O., 2005. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research 82(1), 57-64. https://doi.org/10.1016/j.still.2004.05.007
|
[37] |
Pereira, C.S., Cunha, S.C., Fernandes, J.O., 2020. Validation of an enzyme-linked immunosorbent assay (ELISA) test kit for determination of aflatoxin B1 in corn feed and comparison with liquid-chromatography tandem mass spectrometry (LC-MS/MS) method. Food Analytical Methods 13(9), 1806-1816. https://doi.org/10.1007/s12161-020-01805-4
|
[38] |
Rohe, L., Apelt, B., Vogel, H.J., Well, R., Wu, G.M., Schluter, S., 2020. Denitrification in soil as a function of oxygen supply and demand at the microscale. Biogeosciences Discussions 1-32. https://doi.org/10.5194/bg-2020-221
|
[39] |
Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63(12), 4704-4712. https://doi.org/10.1128/aem.63.12.4704-4712.1997
|
[40] |
Sasal, M.C., Andriulo, A.E., Taboada, M.A., 2006. Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil and Tillage Research 87(1), 9-18. https://doi.org/10.1016/j.still.2005.02.025
|
[41] |
Schossler, T.R., Marchao, R.L., Santos, I.L., Santos, D.P., Nobrega, J.C.A., Santos, G.G., 2018. Soil physical quality in agricultural systems on the Cerrado of Piauí State, Brazil. Anais da Academia Brasileira de Ciencias 90, 3975-3989. https://doi.org/10.1590/0001-3765201820180681
|
[42] |
Simek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53(3), 345-354. https://doi.org/10.1046/j.1365-2389.2002.00461.x
|
[43] |
Tanveera, A., Kanth, T.A., Tali, P.A., Naikoo, M., 2016. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi area of Kashmir valley, India. International Research Journal of Earth Sciences 4(1), 1-6
|
[44] |
Tao, R., Li, J., Hu, B., Chu, G., 2021. Ammonia-oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances, but ammonia-oxidizing archaea are resistant. Geoderma 384, 114814. https://doi.org/10.1016/j.geoderma.2020.114814
|
[45] |
Thapa, R., Tully, K.L., Cabrera, M.L., Dann, C., Schomberg, H.H., Timlin, D., Mirsky, S.B., 2021. Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biology and Fertility of Soils 57(4), 485-498. https://doi.org/0.1007/s00374-021-01543-7
|
[46] |
Thilakarathna, S.K., Hernandez-Ramirez, G., 2021. Primings of soil organic matter and denitrification mediate the effects of moisture on nitrous oxide production. Soil Biology and Biochemistry 155, 108166. https://doi.org/10.1016/j.soilbio.2021.108166
|
[47] |
Wang, L.F., Cai, Z.C., 2004. Effects of temperature and water regime on nitrification and denitrification activity of upland red soils. Soils 36(5), 543-546. https://doi.org/10.1300/J064v24n01_09
|
[48] |
Wang, Y., Zou, G., Hua, F., Liu, H., 2005. Development and advance of soil nitrogen mineralization. Chinese Agricultural Science Bulletin 21(10), 203-208
|
[49] |
Wang, Y., Liu, X., Butterly, C., Tang, C., Xu, J., 2013. pH change, carbon and nitrogen mineralization in paddy soils as affected by Chinese milk vetch addition and soil water regime. Journal of Soils and Sediments 13(4), 654-663. https://doi.org/10.1007/s11368-012-0645-3
|
[50] |
Xiao, K., Yu, L., Xu, J., Brookes, P.C., 2014. pH, nitrogen mineralization, and KCl-extractable aluminum as affected by initial soil pH and rate of vetch residue application: Results from a laboratory study. Journal of Soils and Sediments 14(9), 1513-1525. https://doi.org/10.1007/s11368-014-0909-1
|
[51] |
Yang, C., Liu, N., Zhang, Y., 2019a. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337, 444-452. https://doi.org/10.1016/j.geoderma.2018.10.002
|
[52] |
Yang, Y., Zhang, H., Shan, Y., Wang, J., Qian, X., Meng, T., Cai, Z., 2019b. Response of denitrification in paddy soils with different nitrification rates to soil moisture and glucose addition. Science of the Total Environment 651, 2097-2104. https://doi.org/10.1016/j.scitotenv.2018.10.066
|
[53] |
Yao, H., Shi, C., Shao, W., Bai, J., Yang, H., 2016. Changes and influencing factors of the sediment load in the Xiliugou basin of the upper Yellow River, China. Catena 142, 1-10. https://doi.org/10.1016/j.catena.2016.02.007
|
[54] |
Zhang, J.L., Shang, Y.Z., Liu, J.Y., Fu, J., Tong, L., 2020. Improved ecological development model for lower Yellow River floodplain, China. Water Science and Engineering 13(4), 275-285.https://doi.org/10.1016/j.wse.2020.12.006
|
[55] |
Zhang, L., Lv, J., 2021. Land-use change from cropland to plantations affects the abundance of nitrogen cycle-related microorganisms and genes in the Loess Plateau of China. Applied Soil Ecology 161, 103873. https://doi.org/10.1016/j.apsoil.2020.103873
|
[56] |
Zhang, W.Q., Lv, C., Zhao, X., Dong, A.H., Niu, X.Q., 2021. The influence mechanism of the main suspended particles of Yellow River sand on the emitter clogging-An attempt to improve the irrigation water utilization efficiency in Yellow River basin. Agricultural Water Management 258, 107202. https://doi.org/10.1016/j.agwat.2021.107202
|
[57] |
Zhang, Y.Q., Cui, L.J., Wei, L., Li, K., 2015. Study on the intensity of matrix nitrification and denitrification in tidal flow constructed wetlands. Ecology and Environmental Sciences 24(3), 480-486 (in Chinese). https://doi.org/10.16258/j.cnki.1674-5906.2015.03.017
|
[58] |
Zhao, H.L., Yi, X.Y., Zhou, R.L., Zhao, X.Y., Zhang, T.H., Drake, S., 2006. Wind erosion and sand accumulation effects on soil properties in Horqin sandy farmland, Inner Mongolia. Catena 65(1), 71-79. https://doi.org/10.1016/j.catena.2005.10.001
|
[59] |
Zheng, X., Wang, M., Wang, Y., Shen, R., Gou, J., Li, J., Jin, J., Li, L., 2000. Impacts of soil moisture on nitrous oxide emission from croplands: A case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Global Change Science 2(2), 207-224. https://doi.org/10.1016/S1465-9972(99)00056-2
|