Volume 15 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
Zhi-lin Wang, Mahmood Sadat-Noori, William Glamore. 2022: Groundwater discharge drives water quality and greenhouse gas emissions in a tidal wetland. Water Science and Engineering, 15(2): 141-151. doi: 10.1016/j.wse.2022.02.005
Citation: Zhi-lin Wang, Mahmood Sadat-Noori, William Glamore. 2022: Groundwater discharge drives water quality and greenhouse gas emissions in a tidal wetland. Water Science and Engineering, 15(2): 141-151. doi: 10.1016/j.wse.2022.02.005

Groundwater discharge drives water quality and greenhouse gas emissions in a tidal wetland

doi: 10.1016/j.wse.2022.02.005
  • Received Date: 2021-12-10
  • Accepted Date: 2022-02-05
  • Rev Recd Date: 2022-02-05
  • Available Online: 2022-06-21
  • Wetlands play an important role in the global carbon cycle as they can be sources or sinks for greenhouse gases. Groundwater discharge into wetlands can affect the water chemistry and act as a source of dissolved greenhouse gases, including CO2 and CH4. In this study, surface water quality parameters and CO2 and CH4 concentrations were evaluated in a tidal wetland (Hunter Wetlands National Park, Australia) using time series measurements. Radon (222Rn), a natural groundwater tracer, was used to investigate the role of groundwater as a pathway for transporting dissolved CO2 and CH4 into the wetland. In addition, water-to-air CO2 and CH4 fluxes from the wetland were also estimated. The results showed a high concentration of radon in wetland surface water, indicating the occurrence of groundwater discharge. Radon concentration had a strong negative relationship with water depth with a determination coefficient (R2) of 0.7, indicating that tidal pumping was the main driver of groundwater discharge to the wetland. Radon concentration also showed a positive relationship with CO2 and CH4 concentrations (R2=0.4 and 0.5, respectively), while the time series data revealed that radon, CO2, and CH4 concentrations peaked concurrently during low tides. This implied that groundwater discharge was a source of CO2 and CH4 to the wetland. The wetland had an average water-to-air CO2 flux of 99.1 mmol/(m2·d), twice higher than the global average CO2 flux from wetlands. The average CH4 flux from the wetland was estimated to be 0.3 mmol/(m2·d), which is at the higher end of the global CH4 flux range for wetlands. The results showed that groundwater discharge could be an important, yet unaccounted source of CO2 and CH4 to tidal wetlands. This work has implications for tidal wetland carbon budgets and emphasizes the role of groundwater as a subsurface pathway for carbon transport.

     

  • loading
  • Anibas for his help during fieldwork.References Akhand, A., Chanda, A., Manna, S., Das, S., Hazra, S., Roy, R., Choudhury, S.B., Rao, K.H., Dadhwal, V.K., Chakraborty, K., et al., 2016.
    A comparison of CO2 dynamics and airewater fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophys. Res. Lett. 43(22), 11726-11735. https://doi.org/10.1002/2016GL070716.
    Atkins, M.L., Santos, I.R., Ruiz-Halpern, S., Maher, D.T., 2013. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J.Hydrol. 493, 30-42. https://doi.org/10.1016/j.jhydrol.2013.04.008.
    Atkins, M.L., Santos, I.R., Maher, D.T., 2017. Seasonal exports and drivers of dissolved inorganic and organic carbon, carbon dioxide, methane and d13C signatures in a subtropical river network. Sci. Total Environ. 575, 545-563. https://doi.org/10.1016/j.scitotenv.2016.09.020.
    Barnes, J., Ramesh, R., Purvaja, R., Nirmal Rajkumar, A., Senthil Kumar, B., Krithika, K., Ravichandran, K., Uher, G., Upstill-Goddard, R., 2006. Tidal dynamics and rainfall control N2O and CH4 emissions from a pristine mangrove creek. Geophys. Res. Lett. 33(15), L15405. https://doi.org/10.1029/2006GL026829.
    Bizhanimanzar, M., Leconte, R., Nuth, M., 2019. Modelling of shallow water table dynamics using conceptual and physically based integrated surfacewateregroundwater hydrologic models. Hydrol. Earth Syst. Sci. 23(5), 2245-2260. https://doi.org/10.5194/hess-23-2245-2019.Borges, A.V., Djenidi, S., Lacroix, G., Th eate, J., Delille, B., Frankignoulle, M., 2003. Atmospheric CO2 flux from mangrove surrounding waters. Geophys. Res. Lett. 30(11), 1558. https://doi.org/10.1029/2003GL017143.
    Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., Frankignoulle, M., 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49(5), 1630-1641. https://doi.org/10.4319/lo.2004.49.5.1630.
    Borges, A.V., Abril, G., 2011. 5.04-carbon dioxide and methane dynamics in estuaries. In:Wolanski, E., McLusky, D. (Eds.), Treatise on Estuarine and Coastal Science. Academic Press, Waltham, pp. 119-161.
    Borges, A.V., Darchambeau, F., Lambert, T., Morana, C., Allen, G.H., Tambwe, E., Toengaho Sembaito, A., Mambo, T., Nlandu Wabakhangazi, J., Descy, J.P., et al., 2019. Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences 16(19), 3801-3834. https://doi.org/10.5194/bg-16-3801-2019.
    Bouillon, S., Dehairs, F., Velimirov, B., Abril, G., Borges, A.V., 2007. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). J. Geophys. Res. 112, G02018.https://doi.org/10.1029/2006JG000325.
    Burdige, D.J., Kline, S.W., Chen, W., 2004. Fluorescent dissolved organic matter in marine sediment pore waters. Mar. Chem. 89(1), 289-311.https://doi.org/10.1016/j.marchem.2004.02.015.
    Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., et al., 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367(2), 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009.
    Burnett, W.C., Peterson, R.N., Santos, I.R., Hicks, R.W., 2010. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams. J. Hydrol. 380(3), 298-304. https://doi.org/10.1016/j.jhydrol.2009.11.005.
    Burnett, W.C., Dimova, N., 2012. A radon-based mass balance model for assessing groundwater inflows to lakes. In:Taniguchi, M., Shiraiwa, T.(Eds.), The Dilemma of Boundaries:Toward a New Concept of Catchment. Springer, Tokyo, pp. 55-66.
    Büyükuslu, H., Ozdemir, F.B., öge, T. ö., G ö öokce, H., 2018. Indoor and tap water radon (222Rn) concentration measurements at Giresun University campus areas. Appl. Radiat. Isot. 139, 285-291. https://doi.org/10.1016/j.apradiso.2018.05.027.
    Cai, W.J., Wang, Y., Krest, J., Moore, W.S., 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochem.
    Cosmochim. Acta 67(4), 631-639. https://doi.org/10.1016/S0016-7037(02)01167-5.
    Cai, W.J., 2011. Estuarine and coastal ocean carbon paradox:CO2 sinks or sites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3, 123-145.https://doi.org/10.1146/annurev-marine-120709-142723.
    Call, M., Maher, D.T., Santos, I.R., Ruiz-Halpern, S., Mangion, P., Sanders, C.J., Erler, D.V., Oakes, J.M., Rosentreter, J., Murray, R., et al., 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and springeneapespring timescales in a mangrove creek. Geochem. Cosmochim. Acta 150, 211-225. https://doi.org/10.1016/j.gca.2014.11.023.
    Call, M., Sanders, C.J., Enrich-Prast, A., Sanders, L., Marotta, H., Santos, I.R., Maher, D.T., 2018. Radon-traced pore-water as a potential source of CO2and CH4 to receding black and clear water environments in the Amazon Basin. Limnol. Oceanogr. Let. 3(5), 375-383. https://doi.org/10.1002/lol2.10089.
    Carroll, J.M., Kelly, J.L., Treible, L.M., Bliss, T., 2021. Submarine groundwater discharge as a potential driver of eastern oyster, Crassostrea virginica, populations in Georgia. Mar. Environ. Res. 170, 105440. https://doi.org/10.1016/j.marenvres.2021.105440.
    Chen, C.T.A., Huang, T.H., Chen, Y.C., Bai, Y., He, X., Kang, Y., 2013.Airesea exchanges of CO2 in the world's coastal seas. Biogeosciences 10(10), 6509-6544. https://doi.org/10.5194/bg-10-6509-2013.
    Cheng, C., Sun, T., Li, H., He, Q., Pavlostathis, S.G., Zhang, J., 2021. New insights in correlating greenhouse gas emissions and microbial carbon and nitrogen transformations in wetland sediments based on genomic and functional analysis. J. Environ. Manag. 297, 113280. https://doi.org/10.1016/j.jenvman.2021.113280.
    Cheng, X., Luo, Y., Xu, Q., Lin, G., Zhang, Q., Chen, J., Li, B., 2010. Seasonal variation in CH4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil 327(1), 85-94. https://doi.org/10.1007/s11104-009-0033-y.
    Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., Lynch, J.C., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17(4), 1111. https://doi.org/10.1029/2002GB001917.
    Correa, R.E., Cardenas, M.B., Rodolfo, R.S., Lapus, M.R., Davis, K.L., Giles, A.B., Fullon, J.C., Hajati, M.C., Moosdorf, N., Sanders, C.J., et al., 2021. Submarine groundwater discharge releases CO2 to a coral reef. ACS ES&T Water 1(8), 1756-1764. https://doi.org/10.1021/acsestwater.1c00104.
    Cui, X., Liang, J., Lu, W., Chen, H., Liu, F., Lin, G., Xu, F., Luo, Y., Lin, G., 2018. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For.Meteorol. 249, 71-80. https://doi.org/10.1016/j.agrformet.2017.11.019.
    Dabrowski, J.S., Charette, M.A., Mann, P.J., Ludwig, S.M., Natali, S.M., Holmes, R.M., Schade, J.D., Powell, M., Henderson, P.B., 2020. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska. Biogeochemistry 148(1), 69-89. https://doi.org/10.1007/s10533-020-00647-w.
    Davis, K., Santos, I.R., Perkins, A.K., Webb, J.R., Gleeson, J., 2020. Altered groundwater discharge and associated carbon fluxes in a wetland-drained coastal canal. Estuar. Coast. Shelf Sci. 235, 106567. https://doi.org/10.1016/j.ecss.2019.106567.
    Diggle, R.M., Tait, D.R., Maher, D.T., Huggins, X., Santos, I.R., 2019. The role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada). Environ. Earth Sci. 78(11), 1-13.https://doi.org/10.1007/s12665-019-8291-3.
    Dulaiova, H., Peterson, R., Burnett, W., Lane-Smith, D., 2005. A multidetector continuous monitor for assessment of 222Rn in the coastal ocean. J. Radioanal. Nucl. Chem. 263(2), 361-363. https://doi.org/10.1007/s10967-005-0595-y.
    Ferr on, S., Ortega, T., G omez-Parra, A., Forja, J.M., 2007. Seasonal study of dissolved CH4, CO2 and N2O in a shallow tidal system of the bay of C adiz(SW Spain). J. Mar. Syst. 66(1), 244-257. https://doi.org/10.1016/j.jmarsys.2006.03.021.
    Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., Th eate, J.M., 1998. Carbon dioxide emission from European estuaries. Science 282(5388), 434-436. https://doi.org/10.1126/science.282.5388.434.
    Ganju, N.K., Nidzieko, N.J., Kirwan, M.L., 2013. Inferring tidal wetland stability from channel sediment fluxes:Observations and a conceptual model:Inferring stability from sediment fluxes. J. Geophys. Res. Ear. Sur. 118(4), 2045-2058. https://doi.org/10.1002/jgrf.20143.
    Gleeson, J., Santos, I.R., Maher, D.T., Golsby-Smith, L., 2013. Groundwateresurface water exchange in a mangrove tidal creek:Evidence from natural geochemical tracers and implications for nutrient budgets. Mar.Chem. 156, 27-37. https://doi.org/10.1016/j.marchem.2013.02.001.
    Gudasz, C., Bastviken, D., Steger, K., Premke, K., Sobek, S., Tranvik, L.J., 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305), 478-481. https://doi.org/10.1038/nature09186.
    Guo, X., Xu, B., Burnett, W.C., Wei, Q., Nan, H., Zhao, S., Charette, M.A., Lian, E., Chen, G., Yu, Z., 2020. Does submarine groundwater discharge contribute to summer hypoxia in the Changjiang (Yangtze) River Estuary?Sci. Total Environ. 719, 137450. https://doi.org/10.1016/j.scitotenv.2020. 137450.
    Heron, S.F., Ridd, P.V., 2008. The tidal flushing of multiple-loop animal burrows. Estuar. Coast. Shelf Sci. 78(1), 135-144. https://doi.org/10.1016/j.ecss.2007.11.018.
    Hinson, A.L., Feagin, R.A., Eriksson, M., Najjar, R.G., Herrmann, M., Bianchi, T.S., Kemp, M., Hutchings, J.A., Crooks, S., Boutton, T., 2017.
    The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Global Change Biol. 23(12), 5468-5480.https://doi.org/10.1111/gcb.13811.
    Ho, D.T., Ferr on, S., Engel, V.C., Larsen, L.G., Barr, J.G., 2014. Airewater gas exchange and CO2 flux in a mangrove-dominated estuary. Geophys.Res. Lett. 41(1), 108-113. https://doi.org/10.1002/2013GL058785.
    Ho, D.T., Coffineau, N., Hickman, B., Chow, N., Koffman, T., Schlosser, P., 2016. Influence of current velocity and wind speed on airewater gas exchange in a mangrove estuary. Geophys. Res. Lett. 43(8), 3813-3821.https://doi.org/10.1002/2016GL068727.
    Jeffrey, L.C., Santos, I.R., Tait, D.R., Makings, U., Maher, D.T., 2018. Seasonal drivers of carbon dioxide dynamics in a hydrologically modified subtropical tidal river and estuary (Caboolture River, Australia). J. Geophys. Res. Biogeosci. 123(6), 1827-1849. https://doi.org/10.1029/2017JG004023.
    Jiang, L.Q., Cai, W.J., Wang, Y., 2008. A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol. Oceanogr. 53(6), 2603-2615. https://doi.org/10.4319/lo.2008.53.6.2603.
    Jurado, A., Borges, A.V., Pujades, E., Briers, P., Nikolenko, O., Dassargues, A., Brouy ere, S., 2018. Dynamics of greenhouse gases in the riveregroundwater interface in a gaining river stretch (Triffoy catchment, Belgium). Hydrogeol. J. 26(8), 2739-2751. https://doi.org/10.1007/s10040-018-1834-y.
    Kaur, S., Aggarwal, R., Lal, R., 2016. Assessment and mitigation of greenhouse gas emissions from groundwater irrigation. Irrigat. Drain. 65(5), 762-770. https://doi.org/10.1002/ird.2050.
    Kayranli, B., Scholz, M., Mustafa, A., Hedmark, Å., 2010. Carbon storage and fluxes within freshwater wetlands:A critical review. Wetlands 30(1), 111-124. https://doi.org/10.1007/s13157-009-0003-4.
    Kon e, Y.J.M., Borges, A.V., 2008. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam).Estuar. Coast. Shelf Sci. 77(3), 409-421. https://doi.org/10.1016/j.ecss.2007.10.001.
    Kristensen, E., Flindt, M.R., Ulomi, S., Borges, A.V., Abril, G.E., Bouillon, S., 2008. Emission of CO2 and CH4 to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar. Ecol. Prog. Ser. 370, 53-67. https://doi.org/10.3354/meps07642.
    Leopold, A., Marchand, C., Deborde, J., Chaduteau, C., Allenbach, M., 2013.Influence of mangrove zonation on CO2 fluxes at the sedimenteair interface (New Caledonia). Geoderma 62-70. https://doi.org/10.1016/j.geoderma.2013.03.008.
    Li, L., Barry, D.A., 2000. Wave-induced beach groundwater flow. Adv. Water Resour. 23(4), 325-337. https://doi.org/10.1016/S0309-1708(99)00032-9.
    Li, X., Hu, B.X., Burnett, W.C., Santos, I.R., Chanton, J.P., 2009. Submarine ground water discharge driven by tidal pumping in a heterogeneous aquifer. Groundwater 47(4), 558-568. https://doi.org/10.1111/j.1745-6584.2009.00563.x.
    Macklin, P.A., Maher, D.T., Santos, I.R., 2014. Estuarine canal estate waters:Hotspots of CO2 outgassing driven by enhanced groundwater discharge?
    Mar. Chem. 167, 82-92. https://doi.org/10.1016/j.marchem.2014.08.002.
    Maher, D.T., Cowley, K., Santos, I.R., Macklin, P., Eyre, B.D., 2015. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle:Insights from automated in situ radioactive and stable isotope measurements.
    Mar. Chem. 168, 69-79. https://doi.org/10.1016/j.marchem.2014.10.017.
    May, R., Mazlan, N.S.B., 2014. Numerical simulation of the effect of heavy groundwater abstraction on groundwateresurface water interaction in Langat Basin, Selangor, Malaysia. Environ. Earth Sci. 71(3), 1239-1248.https://doi.org/10.1007/s12665-013-2527-4.
    McCoy, C., Viso, R., Peterson, R.N., Libes, S., Lewis, B., Ledoux, J., Voulgaris, G., Smith, E., Sanger, D., 2011. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia.
    Continent. Shelf Res. 31(12), 1306-1317. https://doi.org/10.1016/j.csr.2011.05.009.
    Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjöork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon:Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9(10), 552-560. https://doi.org/10.1890/110004.
    Monger, H.C., Kraimer, R.A., Khresat, S.E., Cole, D.R., Wang, X., Wang, J., 2015. Sequestration of inorganic carbon in soil and groundwater. Geology 43(5), 375-378. https://doi.org/10.1130/G36449.1.
    Needelman, B.A., Emmer, I.M., Emmett-Mattox, S., Crooks, S., Megonigal, J.P., Myers, D., Oreska, M.P.J., McGlathery, K., 2018. The science and policy of the verified carbon standard methodology for tidal wetland and seagrass restoration. Estuar. Coast. 41(8), 2159-2171. https://doi.org/10.1007/s12237-018-0429-0.
    Nelson, J.R., Eckman, J.E., Robertson, C.Y., Marinelli, R.L., Jahnke, R.A., 1999. Benthic microalgal biomass and irradiance at the sea floor on the continental shelf of the South Atlantic Bight:Spatial and temporal variability and storm effects. Continent. Shelf Res. 19(4), 477-505. https://doi.org/10.1016/S0278-4343(98)00092-2.
    Nelson, N.B., Siegel, D.A., 2013. The global distribution and dynamics of chromophoric dissolved organic matter. Ann. Rev. Mar. Sci. 5(1), 447-476. https://doi.org/10.1146/annurev-marine-120710-100751.
    Nirmal Rajkumar, A., Barnes, J., Ramesh, R., Purvaja, R., UpstillGoddard, R.C., 2008. Methane and nitrous oxide fluxes in the polluted Adyar River and Estuary, SE India. Mar. Pollut. Bull. 56(12), 2043-2051.https://doi.org/10.1016/j.marpolbul.2008.08.005.
    Noriega, C., Araujo, M., 2014. Carbon dioxide emissions from estuaries of northern and northeastern Brazil. Sci. Rep. 4(1), 6164. https://doi.org/10.1038/srep06164.
    Null, K.A., Dimova, N.T., Knee, K.L., Esser, B.K., Swarzenski, P.W., Singleton, M.J., Stacey, M., Paytan, A., 2012. Submarine groundwater discharge-derived nutrient loads to San Francisco Bay:Implications to future ecosystem changes. Estuar. Coast. 35(5), 1299-1315. https://doi.org/10.1007/s12237-012-9526-7.
    Peterson, R.N., Moore, W.S., Chappel, S.L., Viso, R.F., Libes, S.M., Peterson, L.E., 2016. A new perspective on coastal hypoxia:The role of saline groundwater. Mar. Chem. 179, 1-11. https://doi.org/10.1016/j.marchem.2015.12.005.
    Peterson, R.N., Meile, C., Peterson, L.E., Carter, M., Miklesh, D., 2019.Groundwater discharge dynamics into a salt marsh tidal river. Estuar.Coast. Shelf Sci. 218, 324-333. https://doi.org/10.1016/j.ecss.2019.01.007.
    Porubsky, W.P., Joye, S.B., Moore, W.S., Tuncay, K., Meile, C., 2011. Field measurements and modeling of groundwater flow and biogeochemistry at Moses Hammock, a backbarrier island on the Georgia coast. Biogeochemistry 104(1), 69-90. https://doi.org/10.1007/s10533-010-9484-8.
    Raymond, P.A., Cole, J.J., 2001. Gas exchange in rivers and estuaries:Choosing a gas transfer velocity. Estuaries 24(2), 312-317. https://doi.org/10.2307/1352954.Reading, M., Tait, D., Maher, D., Jeffrey, L., Correa, R., Tucker, J., Shishaye, H., 2021. Submarine groundwater discharge drives nitrous oxide source/sink dynamics in a metropolitan estuary. Limnol. Oceanogr. 66, 1-22. https://doi.org/10.1002/lno.11710.
    Reithmaier, G.M.S., Ho, D.T., Johnston, S.G., Maher, D.T., 2020. Mangroves as a source of greenhouse gases to the atmosphere and alkalinity and dissolved carbon to the coastal ocean: A case study from the everglades national Park, Florida. J. Geophys. Res. Biogeosci. 125(12), e2020JG005812. https://doi.org/10.1029/2020JG005812.Rosentreter, J.A., Maher, D.T., Ho, D.T., Call, M., Barr, J.G., Eyre, B.D., 2017.
    Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnol. Oceanogr. 62(2), 561-578. https://doi.org/10.1126/sciadv.aao4985.
    Rosentreter, J.A., Maher, D.T., Erler, D.V., Murray, R.H., Eyre, B.D., 2018.Methane emissions partially offset “blue carbon” burial in mangroves. Sci.Adv. 4(6), eaao4985. https://doi.org/10.1126/sciadv.aao4985.
    Ruiz-Halpern, S., Maher, D.T., Santos, I.R., Eyre, B.D., 2015. High CO2evasion during floods in an Australian subtropical estuary downstream from a modified acidic floodplain wetland. Limnol. Oceanogr. 60(1), 42-56. https://doi.org/10.1002/lno.10004.
    Sadat-Noori, M., Maher, D.T., Santos, I.R., 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuar. Coast. 39(3), 639-656. https://doi.org/10.1007/s12237-015-0042-4.Sadat-Noori, M., Tait, D.R., Maher, D.T., Holloway, C., Santos, I.R., 2017.Greenhouse gases and submarine groundwater discharge in a Sydney Harbour embayment (Australia). Estuar. Coast. Shelf Sci. 207, 499-509.https://doi.org/10.1016/j.ecss.2017.05.020.
    Sadat-Noori, M., Glamore, W., 2019. Porewater exchange drives trace metal, dissolved organic carbon and total dissolved nitrogen export from a temperate mangrove wetland. J. Environ. Manag. 248, 109264. https://doi.org/10.1016/j.jenvman.2019.109264.
    Sadat-Noori, M., Anibas, C., Andersen, M., Glamore, W., 2021a. A comparison of radon, heat tracer and head gradient methods to quantify surface water-groundwater exchange in a tidal wetland (Kooragang Island, Newcastle, Australia). J. Hydrol. 598, 126281. https://doi.org/10.1016/j.jhydrol.2021.126281.
    Sadat-Noori, M., Rankin, C., Rayner, D., Heimhuber, V., Gaston, T., Drummond, C., Chalmers, A., Khojasteh, D., Glamore, W., 2021b. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes.Sci. Rep. 11(1), 1-10. https://doi.org/10.1038/s41598-021-80977-3.
    Sadat-Noori, M., Rutlidge, H., Andersen, M.S., Glamore, W., 2021c. Quantifying groundwater carbon dioxide and methane fluxes to an urban freshwater lake using radon measurements. Sci. Total Environ. 797, 149184. https://doi.org/10.1016/j.scitotenv.2021.149184.
    Salles, P., Bredeweg, B., Arau ´jo, S., 2006. Qualitative models about stream ecosystem recovery: Exploratory studies. Ecol. Model. 194(1), 80-89.https://doi.org/10.1016/j.ecolmodel.2005.10.018.
    Sammut, J., White, I., Melville, M., 1996. Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. Mar.Freshw. Res. 47(5), 669-684. https://doi.org/10.1071/MF9960669.
    Santos, I.R., Burnett, W.C., Dittmar, T., Suryaputra, I.G.N.A., Chanton, J., 2009. Tidal pumping drives nutrient and dissolved organic matter dynamics in a gulf of Mexico subterranean estuary. Geochem. Cosmochim.
    Acta 73(5), 1325-1339. https://doi.org/10.1016/j.gca.2008.11.029.
    Santos, I.R., Eyre, B.D., Huettel, M., 2012a. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar.Coast. Shelf Sci. 98, 1-15. https://doi.org/10.1016/j.ecss.2011.10.024.
    Santos, I.R., Maher, D.T., Eyre, B.D., 2012b. Coupling automated radon and carbon dioxide measurements in coastal waters. Environ. Sci. Technol. 46(14), 7685-7691. https://doi.org/10.1021/es301961b.
    Santos, I.R., Beck, M., Brumsack, H.J., Maher, D.T., Dittmar, T., Waska, H., Schnetger, B., 2015. Porewater exchange as a driver of carbon dynamics across a terrestrialemarine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea. Mar. Chem. 171, 10-20.https://doi.org/10.1016/j.marchem.2015.02.005.
    Santos, I.R., Burdige, D.J., Jennerjahn, T.C., Bouillon, S., Cabral, A., Serrano, O., Wernberg, T., Filbee-Dexter, K., Guimond, J.A., Tamborski, J.J., 2021. The renaissance of Odum’s outwelling hypothesis in‘Blue Carbon’ science. Estuar. Coast. Shelf Sci. 255, 107361. https://doi.org/10.1016/j.ecss.2021.107361.
    Schubert, M., Paschke, A., Lieberman, E., Burnett, W.C., 2012. Airewater partitioning of 222Rn and its dependence on water temperature and salinity.Environ. Sci. Technol. 46(7), 3905-3911. https://doi.org/10.1021/es204680n.
    Schutte, C.A., Moore, W.S., Wilson, A.M., Joye, S.B., 2020. Groundwater-driven methane export reduces salt marsh blue carbon potential. Global Biogeochem.Cycles 34(10), e2020GB006587. https://doi.org/10.1029/2020GB006587.
    Shalini, A., Ramesh, R., Purvaja, R., Barnes, J., 2006. Spatial and temporal distribution of methane in an extensive shallow estuary, South India. J.Earth Syst. Sci. 115(4), 451-460. https://doi.org/10.1007/BF02702873.
    Sippo, J.Z., Maher, D.T., Tait, D.R., Ruiz-Halpern, S., Sanders, C.J., Santos, I.R., 2017. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnology and Oceanography Letters 2(1), 1-8. https://doi.org/10.1002/lol2.10031.
    Skoog, A., Hall, P.O.J., Hulth, S., Pax eus, N., van der Loeff, M.R., Westerlund, S., 1996. Early diagenetic production and sedimentewater exchange of fluorescent dissolved organic matter in the coastal environment. Geochem. Cosmochim. Acta 60(19), 3619-3629. https://doi.org/ 10.1016/0016-7037(96)83275-3.
    Swarzenski, P.W., 2007. U/Th series radionuclides as coastal groundwater tracers. Chem. Rev. 107(2), 663-674. https://doi.org/10.1021/cr0503761.
    Tait, D.R., Maher, D.T., Sanders, C.J., Santos, I.R., 2017. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves. Geochem.Cosmochim. Acta 200, 295-309. https://doi.org/10.1016/j.gca.2016.12.024.
    Taniguchi, M., Dulai, H., Burnett, K.M., Santos, I.R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N., Burnett, W.C., 2019. Submarine groundwater discharge: Updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Front. Environ. Sci. 7, 141.https://doi.org/10.3389/fenvs.2019.00141.
    Valiela, I., Costa, J., Foreman, K., Teal, J.M., Howes, B., Aubrey, D., 1990.Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10(3), 177-197. https://doi.org/ 10.1007/BF00003143.
    Vidon, P., Allan, C., Burns, D., Duval, T.P., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., Sebestyen, S., 2010. Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Resour. Assoc. 46(2), 278-298. https://doi.org/ 10.1111/j.1752-1688.2010.00420.x.
    Wang, F., Lu, X., Sanders, C.J., Tang, J., 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat.Commun. 10(1), 5434. https://doi.org/10.1038/s41467-019-13294-z, 5411.
    Wang, Y., Hu, Y., Yang, C., Chen, Y., 2018. Effects of vegetation types on water-extracted soil organic matter (WSOM) from riparian wetland and its impacts on riverine water quality: Implications for riparian wetland management. Sci. Total Environ. 628-629, 1249-1257. https://doi.org/ 10.1016/j.scitotenv.2018.02.061.
    Wang, Z.A., Cai, W.J., 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2pump. Limnol. Oceanogr. 49(2), 341-354. https://doi.org/10.4319/lo.2004.49.2.0341.
    Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5), 7373-7382. https://doi.org/ 10.1029/92JC00188.
    Webb, J.R., Santos, I.R., Tait, D.R., Sippo, J.Z., Macdonald, B.C.T., Robson, B., Maher, D.T., 2016. Divergent drivers of carbon dioxide and methane dynamics in an agricultural coastal floodplain: Post-flood hydrological and biological drivers. Chem. Geol. 440, 313-325. https://doi.org/10.1016/j.chemgeo.2016.07.025.
    Weiss, R.F., 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 2(3), 203-215. https://doi.org/10.1016/0304-4203(74)90015-2.
    Wiesenburg, D.A., Guinasso, N.L., 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng.Data 24(4), 356-360. https://doi.org/10.1021/je60083a006.
    Zablocki, J.A., Andersson, A.J., Bates, N.R., 2011. Diel aquatic CO2 system dynamics of a Bermudian mangrove environment. Aquat. Geochem. 17(6), 841-859. https://doi.org/10.1007/s10498-011-9142-3.
    Zhang, G., Zhang, J., Liu, S., Ren, J., Xu, J., Zhang, F., 2008. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: Riverine input, sediment release and atmospheric fluxes. Biogeochemistry 91(1), 71-84. https://doi.org/10.1007/s10533-008-9259-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (905) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return