Citation: | Cheng Yao, Zhi-jia Li, Ke Zhang, Ying-chun Huang, Jing-feng Wang, Satish Bastola. 2022: Evaluating performance dependency of a geomorphologic instantaneous unit hydrograph-based hydrological model on DEM resolution. Water Science and Engineering, 15(3): 179-188. doi: 10.1016/j.wse.2022.04.002 |
[1] |
Beven, K., 2012. Rainfall-Runoff Modelling: The Primer, Second Edition. Wiley-Blackwell, Chichester
|
[2] |
Beven, K., 2019. How to make advances in hydrological modelling. Hydrology Research 50(6), 1481-1494. https://doi.org/10.2166/nh.2019.134
|
[3] |
Bhadra, A., Panigrahy, N., Singh, R., Raghuwanshi, N.S., Mal, B.C., Tripathi, M.P., 2008. Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Environmental Modelling & Software 23(8), 1013-1025. https://doi.org/10.1016/j.envsoft.2007.08.008
|
[4] |
Blair, G.S., Beven, K., Lamb, R., Bassett, R., Cauwenberghs, K., Hankin, B., Dean, G., Hunter, N., Edwards, L., Nundloll, V., Samreen, F., Simm, W., Towe, R., 2019. Models of everywhere revisited: A technological perspective. Environmental Modelling & Software 122, 104521. https://doi.org/10.1016/j.envsoft.2019.104521
|
[5] |
Chao, L.J., Zhang, K., Li, Z.J., Wang, J.F., Yao, C., Li, Q.L., 2019. Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2D-SED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China. Journal of Flood Risk Management 12, e12518. https://doi.org/10.1111/jfr3.12518
|
[6] |
Chao, L.J., Zhang, K., Yang, Z.L., Wang, J., Liu, P., Liang, J., Li, Z.J., Gu, Z., 2021. Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. Journal of Hydrology 592, 125814. https://doi.org/10.1016/j.jhydrol.2020.125814
|
[7] |
Chaubey, I., Cotter, A.S., Costello, T.A., Soerens, T.S., 2005. Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes 19(3), 621-628. https://doi.org/10.1002/hyp.5607
|
[8] |
Chavan, S.R., Srinivas, V.V., 2015. Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins. Journal of Hydrology 528, 463-489. https://doi.org/10.1016/j.jhydrol.2015.06.049
|
[9] |
Chen, Y.B., Shi, P., Ji, X.M., Qu, S.M., Zhao, L.L., Dong, F.C., 2019. New method to calculate the dynamic factor-flow velocity in geomorphologic instantaneous unit hydrograph. Scientific Reports 9, 14201. https://doi.org/10.1038/S41598-019-50723-X
|
[10] |
Clark, M.P., Bierkens, M.F.P., Samaniego, L., Woods, R.A., Uijlenhoet, R., Bennett, K.E., Pauwels, V.R.N., Cai, X., Wood, A.W., Peters-Lidard, C.D., 2017. The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences 21(7), 3427-3440. https://doi.org/10.5194/hess-21-3427-2017
|
[11] |
DaRos, D., Borga, M., 1997. Use of digital elevation model data for the derivation of the geomorphological instantaneous unit hydrograph. Hydrological Processes 11(1), 13-33. https://doi.org/10.1002/(SICI)1099-1085(199701)11:1<13::AID-HYP400>3.0.CO;2-M
|
[12] |
Dixon, B., Earls, J., 2009. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrological Processes 23(12), 1714-1724. https://doi.org/10.1002/hyp.7306
|
[13] |
Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031. https://doi.org/10.1029/91WR02985
|
[14] |
Gong, J.F., Yao, C., Li, Z.J., Chen, Y.F., Huang, Y.C., Tong, B.X., 2021. Improving the food forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China. Natural Hazards 106, 2077-2109. https://doi.org/10.1007/s11069-021-04531-0
|
[15] |
Grimaldi, S., Petroselli, A., Nardi, F., 2012. A parsimonious geomorphological unit hydrograph for rainfall-runoff modelling in small ungauged basins. Hydrological Science Journal 57(1), 73-83. https://doi.org/10.1080/02626667.2011.636045
|
[16] |
Gupta, V., Waymire, E., Wang, C., 1980. A representation of an instantaneous unit hydrograph from geomorphology. Water Resources Research 16(5), 855-862. https://doi.org/10.1029/WR016i005p00855
|
[17] |
Habtezion, N., Tahmasebi Nasab, M., Chu, X., 2016. How does DEM resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes? Hydrological Processes 30(25), 4870-4892. https://doi.org/10.1002/hyp.10967
|
[18] |
Hrachowitz, M., Savenije, H.H.G., Bloschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., et al., 2013. A decade of Predictions in Ungauged Basins (PUB): A review. Hydrological Sciences Journal 58(6), 1198-1255. https://doi.org/10.1080/02626667.2013.803183
|
[19] |
Khaing, Z.M., Zhang, K., Sawano, H., Shrestha, B.B., Sayama, T., Nakamura, K., 2019. Flood hazard mapping and assessment in data-scarce Nyaungdon area, Myanmar. PLoS One 14(11), e0224558. https://doi.org/10.1371/journal.pone.0224558
|
[20] |
López-Vicente, M., Álvarez, S., 2018. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surface Processes and Landforms 43(7), 1403-1415. https://doi.org/10.1002/esp.4321
|
[21] |
Maidment, D., Olivera, F., Calver, A., Eatherall, A., Fraczek, W., 1996. Unit hydrograph derived from a spatially distributed velocity field. Hydrological Processes 10, 831-844. https://doi.org/10.1002/(SICI)1099-1085(199606)10:6<831::AID-HYP374>3.0.CO;2-N
|
[22] |
Moglen, G.E., Hartman, G.L., 2001. Resolution effects on hydrologic modeling parameters and peak discharge. Journal of Hydrologic Engineering 6(6), 490-497. https://doi.org/10.1061/(Asce)1084-0699(2001)6:6(490)
|
[23] |
Mu, D.R., Luo, P.P., Lyu, J., Zhou, M.M., Huo, A.D., Duan, W.L., Nover, D., He, B., Zhao, X.L., 2021. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. Journal of Flood Risk Management 14(1), e12668. https://doi.org/10.1111/jfr3.12668
|
[24] |
Munoth, P., Goyal, R., 2019. Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management 33(6), 3303-3319. https://doi.org/10.1007/s11269-019-02303-x
|
[25] |
Reddy, A.S., Reddy, M.J., 2015. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT. Journal of Earth System Science 124(7), 1517-1529. https://doi.org/10.1007/s12040-015-0617-2
|
[26] |
Rodriguez-Iturbe, I., Valdes, J., 1979. The geomorphological structure of hydrologic response. Water Resources Research 15(6), 1409-1420. https://doi.org/10.1029/WR015i006p01409
|
[27] |
Rui, X.F., Yu, M., Liu, F.G., Gong, X.L., 2008. Calculation of watershed flow concentration based on the grid drop concept. Water Science and Engineering 1(1), 1-9. https://doi.org/10.1016/S1674-2370(15)30013-2
|
[28] |
Sahoo, R., Jain, V., 2018. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data. Computers & Geosciences 111, 78-86. https://doi.org/10.1016/j.cageo.2017.10.001
|
[29] |
Valeo, C., Moin, S.M.A., 2000. Grid-resolution effects on a model for integrating urban and rural areas. Hydrological Processes 14(14), 2505-2525. https://doi.org/10.1002/1099-1085(20001015)14:14<2505::AID-HYP111>3.0.CO;2-3
|
[30] |
Vieux, B.E., 2001. Distributed Hydrologic Modeling Using GIS. Kluwer Academic Publishers, Dordrecht
|
[31] |
Vivoni, E.R., Ivanov, V.Y., Bras, R.L., Entekhabi, D., 2005. On the effects of triangulated terrain resolution on distributed hydrologic model response. Hydrological Processes 19(11), 2101-2122. https://doi.org/10.1002/hyp.5671
|
[32] |
Wei, X.D., Wang, N., Luo, P.P., Yang, J., Zhang, J., Lin, K.L., 2021. Spatiotemporal assessment of land marketization and its driving forces for sustainable urban-rural development in Shaanxi Province in China. Sustainability 13(14), 7755. https://doi.org/10.3390/su13147755
|
[33] |
Wilby, R.L., 2019. A global hydrology research agenda fit for the 2030s. Hydrology Research 50(6), 1464-1480. https://doi.org/10.2166/nh.2019.100
|
[34] |
Xu, C., 2021. Issues influencing accuracy of hydrological modeling in a changing environment. Water Science and Engineering 14(2), 167-170. https://doi.org/10.1016/j.wse.2021.06.005
|
[35] |
Yang, P., Ames, D.P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N.F., Cao, Y., 2014. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environmental Modelling & Software 58, 48-57. https://doi.org/10.1016/j.envsoft.2014.04.005
|
[36] |
Yao, C., Li, Z.J., Bao, H.J., Yu, Z.B., 2009. Application of a developed grid-Xinanjiang model to chinese watersheds for flood forecasting purpose. Journal of Hydrologic Engineering 14(9), 923-934. https://doi.org/10.1061/(Asce)He.1943-5584.0000067
|
[37] |
Yao, C., Li, Z.J., Yu, Z.B., Zhang, K., 2012. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. Journal of Hydrology 468-469, 47-62. https://doi.org/10.1016/j.jhydrol.2012.08.025
|
[38] |
Yao, C., Zhang, K., Yu, Z.B., Li, Z.J., Li, Q.L., 2014. Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. Journal of Hydrology 517, 1035-1048. https://doi.org/10.1016/j.jhydrol.2014.06.037
|
[39] |
Yao, C., Ye, J.Y., He, Z.X., Bastola, S., Zhang, K., Li, Z.J., 2019. Evaluation of flood prediction capability of the distributed grid-Xinanjiang model driven by weather research and forecasting precipitation. Journal of Flood Risk Management 12, e12544. https://doi.org/10.1111/jfr3.12544
|
[40] |
Zha, X.B., Luo, P.P., Zhu, W., Wang, S.T., Lyu, J.Q., Zhou, M.M., Huo, A.D., Wang, Z.H., 2021. A bibliometric analysis of the research on sponge city: Current situation and future development direction. Ecohydrology 14(7), e2328. https://doi.org/10.1002/eco.2328
|
[41] |
Zhang, K., Xue, X.W., Hong, Y., Gourley, J.J., Lu, N., Wan, Z.M., Hong, Z., Wooten, R., 2016. iCRESTRIGRS: A coupled modeling system for cascading flood-landslide disaster forecasting. Hydrology and Earth System Sciences 20(12), 5035-5048. https://doi.org/10.5194/hess-20-5035-2016
|
[42] |
Zhang, K., Niu, J., Li, X., Chao, L., 2021. Comparison of artificial intelligence flood forecasting models in China's semi-arid and semi-humid regions. Water Resources Protection 37(1), 28-35 (in Chinese). https://doi.org/10.3880/j.issn.1004-6933.2021.01.005
|
[43] |
Zhao, R., 1992. The Xinanjiang model applied in China. Journal of Hydrology 135, 371-381. https://doi.org/10.1016/0022-1694(92)90096-E
|
[44] |
Zhao, R., Liu, X., 1995. The Xinanjiang model. In: Singh, V., ed., Computer Models of Watershed Hydrology. Water Resources Publications, Colorado, pp. 215-232
|
[45] |
Zheng, X., Tarboton, D.G., Maidment, D.R., Liu, Y.Y., Passalacqua, P., 2018. River channel geometry and rating curve estimation using height above the nearest drainage. Journal of the American Water Resources Association 54(4), 785-806. https://doi.org/10.1111/1752-1688.12661
|
[46] |
Zhu, Y.H., Luo, P.P., Zhang, S., Sun, B., 2020. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sensing 12(24), 4177. https://doi.org/10.3390/Rs12244177
|