Citation: | Jian-hong Han, Wen-hui Jia, Yi Liu, Wei-da Wang, Lian-ke Zhang, Yu-mei Li, Peng Sun, Jian Fan, Shu-ting Hu. 2022: α-Fe2O3/Cu2O composites as catalysts for photoelectrocatalytic degradation of benzotriazoles. Water Science and Engineering, 15(3): 200-209. doi: 10.1016/j.wse.2022.06.003 |
[1] |
Akintayo, C.O., Aremu, O.H., Igboama, W.N., Nelana, S.M., Ayanda, O.S., 2021. Performance evaluation of ultra-violet light and iron oxide nanoparticles for the treatment of synthetic petroleum wastewater: Kinetics of COD removal. Materials 14(17), 5012. https://doi.org/10.3390/ma14175012
|
[2] |
Asif, A.H., Rafique, N., Hirani, R.A.K., Wu, H., Shi, L., Sun, H., 2021. Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid. J. Colloid Interface Sci. 604, 390-401. https://doi.org/10.1016/j.jcis.2021.06.161
|
[3] |
Bagus, P.S., Nelin, C.J., Brundle, C.R., Lahiri, N., Ilton, E.S., Rosso, K.M., 2020. Analysis of the Fe 2p XPS for hematite α Fe2O3: Consequences of covalent bonding and orbital splittings on multiplet splittings. J. Chem. Phys. 152(1), 014704. https://doi.org/10.1063/1.5135595
|
[4] |
Brillas, E., 2020. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198
|
[5] |
Bullen, J.C., Kenney, J.P., Fearn, S., Kafizas, A., Skinner, S., Weiss, D.J., 2020. Improved accuracy in multicomponent surface complexation models using surface-sensitive analytical techniques: Adsorption of arsenic onto a TiO2/Fe2O3 multifunctional sorbent. J. Colloid Interface Sci. 580, 834-849. https://doi.org/10.1016/j.jcis.2020.06.119
|
[6] |
Can-Güven, E., 2021. Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis. J. Environ. Manag. 300, 113784. https://doi.org/10.1016/j.jenvman.2021.113784
|
[7] |
Castaldo, R., de Luna, M.S., Siviello, C., Gentile, G., Lavorgna, M., Amendola, E., Cocca, M., 2020. On the acid-responsive release of benzotriazole from engineered mesoporous silica nanoparticles for corrosion protection of metal surfaces. J. Cult. Herit. 44, 317-324. https://doi.org/10.1016/j.culher.2020.01.016
|
[8] |
Cheng, L., Jiang, T., Zhang, J., 2021. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu2O/WO3 ternary film: Mechanism and reaction pathways. Sci. Total Environ. 776, 145840. https://doi.org/10.1016/j.scitotenv.2021.145840
|
[9] |
Ding, Y., Yang, C., Zhu, L., Zhang, J., 2009. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard Mater. 175, 96-103. https://doi.org/10.1016/j.jhazmat.2009.09.037
|
[10] |
Feng, H., Cao, H., Li, J., Zhang, H., Xue, Q., Liu, X., Zhang, A, Fu, J., 2020. Estrogenic activity of benzotriazole UV stabilizers evaluated through in vitro assays and computational studies. Sci. Total Environ. 727, 138549. https://doi.org/10.1016/j.scitotenv.2020.138549
|
[11] |
Gaim, Y.T., Tesfamariam, G.M., Nigussie, G.Y., Ashebir, M.E., 2019. Synthesis, characterization and photocatalytic activity of N-doped Cu2O/ZnO nanocomposite on degradation of methyl red. J. Composit. Sci. 3(4), 93. https://doi.org/10.3390/jcs3040093
|
[12] |
Hannan, A.A., Nasir, R., Kalyan, H.R.A., Hong, W., Lei, S., Hongqi, S., 2021. Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid. J. Colloid Interface Sci. 604, 390-401. https://doi.org/10.1016/j.jcis.2021.06.161
|
[13] |
He, F., Meng, A., Cheng, B., Ho, W., Yu, J., 2020. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 41(1), 9-20. https://doi.org/10.1016/S1872-2067(19)63382-6
|
[14] |
He, K., Xie, J., Luo, X., Wen, J., Ma, S., Li, X., Fang, Y., Zhang, X., 2017. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38(2), 240-252. https://doi.org/10.1016/S1872-2067(17)62759-1
|
[15] |
He, Y., Zhang, L., Wang, X., Wu, Y., Lin, H., Zhao, L., Weng, W., Wan, H., Fan, M., 2014. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-gC3N4 composite under visible light irradiation. RSC Adv. 4(26), 13610-13619. https://doi.org/10.1039/C4RA00693C
|
[16] |
Hu, J., Wang, L., Zhang, P., Liang, C., Shao, G., 2016. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources 328, 28-36. https://doi.org/10.1016/j.jpowsour.2016.08.001
|
[17] |
Imrich, T., Krýsová, H., Neumann-Spallart, M., Krýsa, J., 2021. Fe2O3 photoanodes: Photocorrosion protection by thin SnO2 and TiO2 films. J. Electroanal. Chem. 892, 115282. https://doi.org/10.1016/j.jelechem.2021.115282
|
[18] |
Jiang, T., Wang, K., Guo, T., Wu, X., Zhang, G., 2020. Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation. Chin. J. Catal. 41(1), 161-169. https://doi.org/10.1016/S1872-2067(19)63391-7
|
[19] |
Joseph, H.M., Sugunan, S., 2021. Copper loaded HPfCNT/TiO2 ternary nanohybrids as green and robust catalysts for dehydrogenation of cyclohexanol under visible light. Mater. Sci. Semicond. Process. 129, 105784. https://doi.org/10.1016/j.mssp.2021.105784
|
[20] |
Khasawneh, O.F.S., Palaniandy, P., Teng, L.P., 2019. Large-scale study for the photocatalytic degradation of paracetamol using Fe2O3/TiO2 nanocomposite catalyst and CPC reactor under natural sunlight radiations. Methods X 6, 2735-2743. https://doi.org/10.1016/j.mex.2019.11.016
|
[21] |
Leao-Neto, V.S., da Silva, A.C., Camargo, L.P., Pelissari, M.R.D.S., da Silva, P.R.C., Parreira, P.S., Segatelli, M.G., Dall, L.H., 2020. Fabrication of rGO/α-Fe2O3 electrodes: Characterization and use in photoelectrocatalysis. J. Mater. Sci. Mater. Electron. 31(19), 16882-16897. https://doi.org/10.1007/s10854-020-04244-3
|
[22] |
Li, H., Tian, J., Xiao, F., Huang, R., Gao, S., Cui, F., Wang, S, Duan, X., 2020a. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. J. Hazard Mater. 385, 121518. https://doi.org/10.1016/j.jhazmat.2019.121518
|
[23] |
Li, Q., Zhao, W., Zhai, Z., Ren, K., Wang, T., Guan, H., Shi, H., 2020b. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J. Mater. Sci. Technol. 56, 216-226. https://doi.org/10.1016/j.jmst.2020.03.038
|
[24] |
Li, X., Zhang, D., Liu, Z., Lyu, C., Niu, S., Dong, Z., Lyu, C., 2020c. Enhanced catalytic oxidation of benzotriazole via peroxymonosulfate activated by CoFe2O4 supported onto nitrogen-doped three-dimensional graphene aerogels. Chem. Eng. J. 400, 125897. https://doi.org/10.1016/j.cej.2020.125897
|
[25] |
Li, Z., He, Z., Lai, H., He, Y., Zhu, Z., Chen, Y., Jin, T., 2021. A novel high-efficiency photocatalyst Ta2O5/PtCl2 nanosheets for benzotriazole degradation. J. Environ. Chem. Eng. 9(6), 106345. https://doi.org/10.1016/j.jece.2021.106345
|
[26] |
Liang, R., Liang, Z., Chen, F., Xie, D., Wu, Y., Wang, X., Yan, G., Wu, L., 2020. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification. Chin. J. Catal. 41(1), 188-199. https://doi.org/10.1016/S1872-2067(19)63402-9
|
[27] |
Liu, B., Wen, L., Zhao, X., 2009. Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. Prog. Org. Coating 64(2-3), 120-123. https://doi.org/10.1016/j.porgcoat.2008.09.014
|
[28] |
Liu, X., Gu, S., Zhao, Y., Zhou, G., Li, W., 2020. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 56, 45-68. https://doi.org/10.1016/j.jmst.2020.04.023
|
[29] |
Machreki, M., Chouki, T., Martelanc, M., Butinar, L., Vodopivec, B.M., Emin, S., 2021. Preparation of porous α-Fe2O3 thin films for efficient photoelectrocatalytic degradation of basic blue 41 dye. J. Environ. Chem. Eng. 9(4), 105495. https://doi.org/10.1016/j.jece.2021.105495
|
[30] |
Polat, K., 2020. Cuprous oxide film sputtered on monolayer graphene for visible light sensitive heterogeneous photocatalysis. Thin Solid Films 709, 138254. https://doi.org/10.1016/j.tsf.2020.138254
|
[31] |
Sarto, G., Lopes, F., Dos Santos, F.R., Parreira, P.S., Almeida, L.C., 2019. Characterization of Cu2O/TiO2NTs nanomaterials using EDXRF, XRD and DRS for photocatalytic applications. Appl. Radiat. Isot. 151, 124-128. https://doi.org/10.1016/j.apradiso.2019.04.036
|
[32] |
Sheikholeslami, Z., Kebria, D.Y., Qaderi, F., 2020. Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light. J. Mol. Liq. 299, 112118. https://doi.org/10.1016/j.molliq.2019.112118
|
[33] |
Shi, Y., Jiang, X., Zheng, S., Zhang, Y., Sun, Z., 2019. Cu2O-decorated TiO2 nanotubes with enhanced optical properties and photocatalytic performance. J. Electron. Mater. 48(10), 6591-6597. https://doi.org/10.1007/s11664-019-07467-1
|
[34] |
Srivastava, R.P., Ingole, S., 2020. An investigation on the phase purity of iron pyrite (FeS2) thin films obtained from the sulfurization of hematite (Fe2O3) thin films. Mater. Sci. Semicond. Process. 106, 104775. https://doi.org/10.1016/j.mssp.2019.104775
|
[35] |
Tan, W., Cao, B., Xiao, W., Zhang, M., Wang, S., Xie, S., Xie, D., Cheng, F., Guo, Q., Liu, P., 2019. Electrochemical reduction of CO2 on hollow cubic Cu2O@Au nanocomposites. Nanoscale Res. Lett. 14(1), 1-7. https://doi.org/10.1186/s11671-019-2892-3
|
[36] |
Trejo-Castillo, R., El Kassis, E.G., Cuervo-López, F., Texier, A.C., 2021. Cometabolic biotransformation of benzotriazole in nitrifying batch cultures. Chemosphere 270, 129461. https://doi.org/10.1016/j.chemosphere.2020.129461
|
[37] |
Wang, B., Li, Q., Lv, Y., Fu, H., Liu, D., Feng, Y., Xie, H., Qu, H., 2021. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chem. Eng. J. 416, 129162. https://doi.org/10.1016/j.cej.2021.129162
|
[38] |
Wang, Y., Cao, S., Huan, Y., Nie, T., Ji, Z., Bai, Z., Cheng, X., Xi, J., Yan, X., 2020a. The effect of composite catalyst on Cu2O/TiO2 heterojunction photocathodes for efficient water splitting. Appl. Surf. Sci. 526, 146700. https://doi.org/10.1016/j.apsusc.2020.146700
|
[39] |
Wang, Y., Wang, K., Wang, J., Wu, X., Zhang, G., 2020b. Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. J. Mater. Sci. Technol. 56, 236-243. https://doi.org/10.1016/S1872-2067(19)63402-9
|
[40] |
Wu, J., Pu, W., Yang, C., Zhang, M., Zhang, J., 2013. Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst. J. Environ. Sci. 25(4), 801-807. https://doi.org/10.1016/S1001-0742(12)60117-X
|
[41] |
Yang, T., Mai, J., Wu, S., Liu, C., Ma, J., 2021. UV/chlorine process for degradation of benzothiazole and benzotriazole in water: Efficiency, mechanism and toxicity evaluation. Sci. Total Environ. 760(1), 144304. https://doi.org/10.1016/j.scitotenv.2020.144304
|
[42] |
Yao, Y., Pan, B., Wang, W., Tan, S., 2021. Effects of benzotriazole and imidazoline on the tribocorrosion behaviors of a WC-based material in saline silica slurries. Int. J. Refract. Metals Hard Mater. 97, 105523. https://doi.org/10.1016/j.ijrmhm.2021.105523
|
[43] |
Yin, W., Shao, H., Huo, Z., Wang, S., Zou, Q., Xu, G., 2021. Degradation of anticorrosive agent benzotriazole by electron beam irradiation: Mechanisms, degradation pathway and toxicological analysis. Chemosphere 278, 132133. https://doi.org/10.1016/j.chemosphere.2021.132133
|
[44] |
Zhang, M., Gong, Y., Ma, N., Zhao, X., 2020a. Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode. Chem. Eng. J. 399, 125088. https://doi.org/10.1016/j.cej.2020.125088
|
[45] |
Zhang, Y., Xu, X., Cai, J., Pan, Y., Zhou, M., 2021. Degradation of 2,4-dichlorophenoxyacetic acid by a novel photoelectrocatalysis/photoelectro-Fenton process using Blue-TiO2 nanotube arrays as the anode. Chemosphere 266, 129063. https://doi.org/10.1016/j.chemosphere.2020.129063
|
[46] |
Zhang, Z., Sun, L., Wu, Z., Liu, Y., Li, S., 2020b. Facile hydrothermal synthesis of CuO-Cu2O/GO nanocomposites for the photocatalytic degradation of organic dye and tetracycline pollutants. New J. Chem. 44(16), 6420-6427. https://doi.org/10.1039/D0NJ00577K
|