Volume 15 Issue 3
Aug.  2022
Turn off MathJax
Article Contents
Jian-hong Han, Wen-hui Jia, Yi Liu, Wei-da Wang, Lian-ke Zhang, Yu-mei Li, Peng Sun, Jian Fan, Shu-ting Hu. 2022: α-Fe2O3/Cu2O composites as catalysts for photoelectrocatalytic degradation of benzotriazoles. Water Science and Engineering, 15(3): 200-209. doi: 10.1016/j.wse.2022.06.003
Citation: Jian-hong Han, Wen-hui Jia, Yi Liu, Wei-da Wang, Lian-ke Zhang, Yu-mei Li, Peng Sun, Jian Fan, Shu-ting Hu. 2022: α-Fe2O3/Cu2O composites as catalysts for photoelectrocatalytic degradation of benzotriazoles. Water Science and Engineering, 15(3): 200-209. doi: 10.1016/j.wse.2022.06.003

α-Fe2O3/Cu2O composites as catalysts for photoelectrocatalytic degradation of benzotriazoles

doi: 10.1016/j.wse.2022.06.003
Funds:

This work was supported by the Open Program of the Tianjin Key Laboratory of Green Chemical Engineering Process Engineering, Tiangong University, Tianjin (Grant No. GCEPE20190108), the Inner Mongolia Natural Science Foundation (Grant No. 2020MS02015), and the Regional Science Foundation Project of the National Natural Science Foundation of China (Grant No. 42167029).

  • Received Date: 2021-11-23
  • Accepted Date: 2022-04-10
  • Rev Recd Date: 2022-04-10
  • Available Online: 2022-08-24
  • Given the difficulties of degrading benzotriazole (BTA), this study used a one-pot hydrothermal method to prepare α-Fe2O3/Cu2O (FC) composites for photoelectrocatalytic (PEC) degradation of BTA. The characterization of FC structure showed that Cu2O in cubic crystals was loaded with circular sheets of Fe2O3. Owing to this structure, FC showed efficient PEC degradation of BTA when exposed to ultraviolet light. The experimental results demonstrated that FC efficiently degraded BTA. When the PEC degradation continued for 60 min, 100% degradation of BTA was achieved because FC enhanced the photoelectron-hole separation and the separation and transfer of articulated carriers. High performance liquid chromatography–mass spectrometry showed that intermediates formed during the PEC degradation of BTA. Finally, various pathways for degradation of BTA were postulated. This FC-based PEC system provides a harmless and effective method for degradation of BTA.

     

  • loading
  • [1]
    Akintayo, C.O., Aremu, O.H., Igboama, W.N., Nelana, S.M., Ayanda, O.S., 2021. Performance evaluation of ultra-violet light and iron oxide nanoparticles for the treatment of synthetic petroleum wastewater: Kinetics of COD removal. Materials 14(17), 5012. https://doi.org/10.3390/ma14175012
    [2]
    Asif, A.H., Rafique, N., Hirani, R.A.K., Wu, H., Shi, L., Sun, H., 2021. Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid. J. Colloid Interface Sci. 604, 390-401. https://doi.org/10.1016/j.jcis.2021.06.161
    [3]
    Bagus, P.S., Nelin, C.J., Brundle, C.R., Lahiri, N., Ilton, E.S., Rosso, K.M., 2020. Analysis of the Fe 2p XPS for hematite α Fe2O3: Consequences of covalent bonding and orbital splittings on multiplet splittings. J. Chem. Phys. 152(1), 014704. https://doi.org/10.1063/1.5135595
    [4]
    Brillas, E., 2020. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250, 126198. https://doi.org/10.1016/j.chemosphere.2020.126198
    [5]
    Bullen, J.C., Kenney, J.P., Fearn, S., Kafizas, A., Skinner, S., Weiss, D.J., 2020. Improved accuracy in multicomponent surface complexation models using surface-sensitive analytical techniques: Adsorption of arsenic onto a TiO2/Fe2O3 multifunctional sorbent. J. Colloid Interface Sci. 580, 834-849. https://doi.org/10.1016/j.jcis.2020.06.119
    [6]
    Can-Güven, E., 2021. Advanced treatment of dye manufacturing wastewater by electrocoagulation and electro-Fenton processes: Effect on COD fractions, energy consumption, and sludge analysis. J. Environ. Manag. 300, 113784. https://doi.org/10.1016/j.jenvman.2021.113784
    [7]
    Castaldo, R., de Luna, M.S., Siviello, C., Gentile, G., Lavorgna, M., Amendola, E., Cocca, M., 2020. On the acid-responsive release of benzotriazole from engineered mesoporous silica nanoparticles for corrosion protection of metal surfaces. J. Cult. Herit. 44, 317-324. https://doi.org/10.1016/j.culher.2020.01.016
    [8]
    Cheng, L., Jiang, T., Zhang, J., 2021. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu2O/WO3 ternary film: Mechanism and reaction pathways. Sci. Total Environ. 776, 145840. https://doi.org/10.1016/j.scitotenv.2021.145840
    [9]
    Ding, Y., Yang, C., Zhu, L., Zhang, J., 2009. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard Mater. 175, 96-103. https://doi.org/10.1016/j.jhazmat.2009.09.037
    [10]
    Feng, H., Cao, H., Li, J., Zhang, H., Xue, Q., Liu, X., Zhang, A, Fu, J., 2020. Estrogenic activity of benzotriazole UV stabilizers evaluated through in vitro assays and computational studies. Sci. Total Environ. 727, 138549. https://doi.org/10.1016/j.scitotenv.2020.138549
    [11]
    Gaim, Y.T., Tesfamariam, G.M., Nigussie, G.Y., Ashebir, M.E., 2019. Synthesis, characterization and photocatalytic activity of N-doped Cu2O/ZnO nanocomposite on degradation of methyl red. J. Composit. Sci. 3(4), 93. https://doi.org/10.3390/jcs3040093
    [12]
    Hannan, A.A., Nasir, R., Kalyan, H.R.A., Hong, W., Lei, S., Hongqi, S., 2021. Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid. J. Colloid Interface Sci. 604, 390-401. https://doi.org/10.1016/j.jcis.2021.06.161
    [13]
    He, F., Meng, A., Cheng, B., Ho, W., Yu, J., 2020. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 41(1), 9-20. https://doi.org/10.1016/S1872-2067(19)63382-6
    [14]
    He, K., Xie, J., Luo, X., Wen, J., Ma, S., Li, X., Fang, Y., Zhang, X., 2017. Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nanosheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin. J. Catal. 38(2), 240-252. https://doi.org/10.1016/S1872-2067(17)62759-1
    [15]
    He, Y., Zhang, L., Wang, X., Wu, Y., Lin, H., Zhao, L., Weng, W., Wan, H., Fan, M., 2014. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-gC3N4 composite under visible light irradiation. RSC Adv. 4(26), 13610-13619. https://doi.org/10.1039/C4RA00693C
    [16]
    Hu, J., Wang, L., Zhang, P., Liang, C., Shao, G., 2016. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Sources 328, 28-36. https://doi.org/10.1016/j.jpowsour.2016.08.001
    [17]
    Imrich, T., Krýsová, H., Neumann-Spallart, M., Krýsa, J., 2021. Fe2O3 photoanodes: Photocorrosion protection by thin SnO2 and TiO2 films. J. Electroanal. Chem. 892, 115282. https://doi.org/10.1016/j.jelechem.2021.115282
    [18]
    Jiang, T., Wang, K., Guo, T., Wu, X., Zhang, G., 2020. Fabrication of Z-scheme MoO3/Bi2O4 heterojunction photocatalyst with enhanced photocatalytic performance under visible light irradiation. Chin. J. Catal. 41(1), 161-169. https://doi.org/10.1016/S1872-2067(19)63391-7
    [19]
    Joseph, H.M., Sugunan, S., 2021. Copper loaded HPfCNT/TiO2 ternary nanohybrids as green and robust catalysts for dehydrogenation of cyclohexanol under visible light. Mater. Sci. Semicond. Process. 129, 105784. https://doi.org/10.1016/j.mssp.2021.105784
    [20]
    Khasawneh, O.F.S., Palaniandy, P., Teng, L.P., 2019. Large-scale study for the photocatalytic degradation of paracetamol using Fe2O3/TiO2 nanocomposite catalyst and CPC reactor under natural sunlight radiations. Methods X 6, 2735-2743. https://doi.org/10.1016/j.mex.2019.11.016
    [21]
    Leao-Neto, V.S., da Silva, A.C., Camargo, L.P., Pelissari, M.R.D.S., da Silva, P.R.C., Parreira, P.S., Segatelli, M.G., Dall, L.H., 2020. Fabrication of rGO/α-Fe2O3 electrodes: Characterization and use in photoelectrocatalysis. J. Mater. Sci. Mater. Electron. 31(19), 16882-16897. https://doi.org/10.1007/s10854-020-04244-3
    [22]
    Li, H., Tian, J., Xiao, F., Huang, R., Gao, S., Cui, F., Wang, S, Duan, X., 2020a. Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. J. Hazard Mater. 385, 121518. https://doi.org/10.1016/j.jhazmat.2019.121518
    [23]
    Li, Q., Zhao, W., Zhai, Z., Ren, K., Wang, T., Guan, H., Shi, H., 2020b. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J. Mater. Sci. Technol. 56, 216-226. https://doi.org/10.1016/j.jmst.2020.03.038
    [24]
    Li, X., Zhang, D., Liu, Z., Lyu, C., Niu, S., Dong, Z., Lyu, C., 2020c. Enhanced catalytic oxidation of benzotriazole via peroxymonosulfate activated by CoFe2O4 supported onto nitrogen-doped three-dimensional graphene aerogels. Chem. Eng. J. 400, 125897. https://doi.org/10.1016/j.cej.2020.125897
    [25]
    Li, Z., He, Z., Lai, H., He, Y., Zhu, Z., Chen, Y., Jin, T., 2021. A novel high-efficiency photocatalyst Ta2O5/PtCl2 nanosheets for benzotriazole degradation. J. Environ. Chem. Eng. 9(6), 106345. https://doi.org/10.1016/j.jece.2021.106345
    [26]
    Liang, R., Liang, Z., Chen, F., Xie, D., Wu, Y., Wang, X., Yan, G., Wu, L., 2020. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification. Chin. J. Catal. 41(1), 188-199. https://doi.org/10.1016/S1872-2067(19)63402-9
    [27]
    Liu, B., Wen, L., Zhao, X., 2009. Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. Prog. Org. Coating 64(2-3), 120-123. https://doi.org/10.1016/j.porgcoat.2008.09.014
    [28]
    Liu, X., Gu, S., Zhao, Y., Zhou, G., Li, W., 2020. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 56, 45-68. https://doi.org/10.1016/j.jmst.2020.04.023
    [29]
    Machreki, M., Chouki, T., Martelanc, M., Butinar, L., Vodopivec, B.M., Emin, S., 2021. Preparation of porous α-Fe2O3 thin films for efficient photoelectrocatalytic degradation of basic blue 41 dye. J. Environ. Chem. Eng. 9(4), 105495. https://doi.org/10.1016/j.jece.2021.105495
    [30]
    Polat, K., 2020. Cuprous oxide film sputtered on monolayer graphene for visible light sensitive heterogeneous photocatalysis. Thin Solid Films 709, 138254. https://doi.org/10.1016/j.tsf.2020.138254
    [31]
    Sarto, G., Lopes, F., Dos Santos, F.R., Parreira, P.S., Almeida, L.C., 2019. Characterization of Cu2O/TiO2NTs nanomaterials using EDXRF, XRD and DRS for photocatalytic applications. Appl. Radiat. Isot. 151, 124-128. https://doi.org/10.1016/j.apradiso.2019.04.036
    [32]
    Sheikholeslami, Z., Kebria, D.Y., Qaderi, F., 2020. Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light. J. Mol. Liq. 299, 112118. https://doi.org/10.1016/j.molliq.2019.112118
    [33]
    Shi, Y., Jiang, X., Zheng, S., Zhang, Y., Sun, Z., 2019. Cu2O-decorated TiO2 nanotubes with enhanced optical properties and photocatalytic performance. J. Electron. Mater. 48(10), 6591-6597. https://doi.org/10.1007/s11664-019-07467-1
    [34]
    Srivastava, R.P., Ingole, S., 2020. An investigation on the phase purity of iron pyrite (FeS2) thin films obtained from the sulfurization of hematite (Fe2O3) thin films. Mater. Sci. Semicond. Process. 106, 104775. https://doi.org/10.1016/j.mssp.2019.104775
    [35]
    Tan, W., Cao, B., Xiao, W., Zhang, M., Wang, S., Xie, S., Xie, D., Cheng, F., Guo, Q., Liu, P., 2019. Electrochemical reduction of CO2 on hollow cubic Cu2O@Au nanocomposites. Nanoscale Res. Lett. 14(1), 1-7. https://doi.org/10.1186/s11671-019-2892-3
    [36]
    Trejo-Castillo, R., El Kassis, E.G., Cuervo-López, F., Texier, A.C., 2021. Cometabolic biotransformation of benzotriazole in nitrifying batch cultures. Chemosphere 270, 129461. https://doi.org/10.1016/j.chemosphere.2020.129461
    [37]
    Wang, B., Li, Q., Lv, Y., Fu, H., Liu, D., Feng, Y., Xie, H., Qu, H., 2021. Insights into the mechanism of peroxydisulfate activated by magnetic spinel CuFe2O4/SBC as a heterogeneous catalyst for bisphenol S degradation. Chem. Eng. J. 416, 129162. https://doi.org/10.1016/j.cej.2021.129162
    [38]
    Wang, Y., Cao, S., Huan, Y., Nie, T., Ji, Z., Bai, Z., Cheng, X., Xi, J., Yan, X., 2020a. The effect of composite catalyst on Cu2O/TiO2 heterojunction photocathodes for efficient water splitting. Appl. Surf. Sci. 526, 146700. https://doi.org/10.1016/j.apsusc.2020.146700
    [39]
    Wang, Y., Wang, K., Wang, J., Wu, X., Zhang, G., 2020b. Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. J. Mater. Sci. Technol. 56, 236-243. https://doi.org/10.1016/S1872-2067(19)63402-9
    [40]
    Wu, J., Pu, W., Yang, C., Zhang, M., Zhang, J., 2013. Removal of benzotriazole by heterogeneous photoelectro-Fenton like process using ZnFe2O4 nanoparticles as catalyst. J. Environ. Sci. 25(4), 801-807. https://doi.org/10.1016/S1001-0742(12)60117-X
    [41]
    Yang, T., Mai, J., Wu, S., Liu, C., Ma, J., 2021. UV/chlorine process for degradation of benzothiazole and benzotriazole in water: Efficiency, mechanism and toxicity evaluation. Sci. Total Environ. 760(1), 144304. https://doi.org/10.1016/j.scitotenv.2020.144304
    [42]
    Yao, Y., Pan, B., Wang, W., Tan, S., 2021. Effects of benzotriazole and imidazoline on the tribocorrosion behaviors of a WC-based material in saline silica slurries. Int. J. Refract. Metals Hard Mater. 97, 105523. https://doi.org/10.1016/j.ijrmhm.2021.105523
    [43]
    Yin, W., Shao, H., Huo, Z., Wang, S., Zou, Q., Xu, G., 2021. Degradation of anticorrosive agent benzotriazole by electron beam irradiation: Mechanisms, degradation pathway and toxicological analysis. Chemosphere 278, 132133. https://doi.org/10.1016/j.chemosphere.2021.132133
    [44]
    Zhang, M., Gong, Y., Ma, N., Zhao, X., 2020a. Promoted photoelectrocatalytic degradation of BPA with peroxymonosulfate on a MnFe2O4 modified carbon paper cathode. Chem. Eng. J. 399, 125088. https://doi.org/10.1016/j.cej.2020.125088
    [45]
    Zhang, Y., Xu, X., Cai, J., Pan, Y., Zhou, M., 2021. Degradation of 2,4-dichlorophenoxyacetic acid by a novel photoelectrocatalysis/photoelectro-Fenton process using Blue-TiO2 nanotube arrays as the anode. Chemosphere 266, 129063. https://doi.org/10.1016/j.chemosphere.2020.129063
    [46]
    Zhang, Z., Sun, L., Wu, Z., Liu, Y., Li, S., 2020b. Facile hydrothermal synthesis of CuO-Cu2O/GO nanocomposites for the photocatalytic degradation of organic dye and tetracycline pollutants. New J. Chem. 44(16), 6420-6427. https://doi.org/10.1039/D0NJ00577K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (168) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return