Volume 15 Issue 4
Dec.  2022
Turn off MathJax
Article Contents
Chao-min Shen, Si-hong Liu, Liu-jiang Wang, Ji-du Yu, Hao Wei, Ping Wu. 2022: Packing, compressibility, and crushability of rockfill materials with polydisperse particle size distributions and implications for dam engineering. Water Science and Engineering, 15(4): 358-366. doi: 10.1016/j.wse.2022.07.003
Citation: Chao-min Shen, Si-hong Liu, Liu-jiang Wang, Ji-du Yu, Hao Wei, Ping Wu. 2022: Packing, compressibility, and crushability of rockfill materials with polydisperse particle size distributions and implications for dam engineering. Water Science and Engineering, 15(4): 358-366. doi: 10.1016/j.wse.2022.07.003

Packing, compressibility, and crushability of rockfill materials with polydisperse particle size distributions and implications for dam engineering

doi: 10.1016/j.wse.2022.07.003
Funds:

This work was supported by the National Natural Science Foundation of China (Grants No. 52009036, U1765205, and 51979091) and the Key Project of Water Conservancy Science and Technology in Jiangxi Province (Grant No. 201921ZDKT13).

  • Received Date: 2021-11-07
  • Accepted Date: 2022-07-30
  • Rev Recd Date: 2022-06-16
  • Available Online: 2022-11-04
  • In rockfill dam engineering, particle breakage of rockfill materials is one of the major factors resulting in dam settlement. In this study, onedimensional compression tests on a series of coarse granular materials with artificially-graded particle size distributions (PSDs) were carried out. The tests focused on understanding the role of initial PSDs in the dense packing density, compressibility and crushability of coarse granular materials. The effects of fractal dimension (D) and size polydispersity (θ) of PSDs were quantitatively analyzed. Two different loading stages were identified from the logarithms of the stressestrain relationships, with the turning point marked as the yield stress. A similar effect of initial PSDs was observed on the packing density and low-pressure modulus of coarse granular materials. The packing density and low-pressure modulus increased monotonically with θ, and their peak values were attained at a D value of approximately 2.2. However, there was no unique correspondence between the dense packing density and low-pressure modulus. The particle breakage was influenced differently by the initial PSDs, and it decreased with the values of D and θ. The emergence of the unique ultimate state was also identified from both the compression curves and PSDs of the samples after the tests. The potential implications of the test results in the design of both low and high rockfill dams were also demonstrated.

     

  • loading
  • Afshar, T., Disfani, M.M., Arulrajah, A., Narsilio, G.A., Emam, S., 2017.Impact of particle shape on breakage of recycled construction and demolition aggregates. Powder Technol. 308, 1-12. https://doi.org/10.1016/j.powtec.2016.11.043.
    Altuhafi, F., Baudet, B.A., Sammonds, P., 2010. The mechanics of subglacial sediment: An example of new “transitional” behaviour. Can. Geotech. J. 47(7), 775-790. https://doi.org/10.1139/T09-136.
    Altuhafi, F., Coop, M.R., 2011. Changes to particle characteristics associated with the compression of sands. Geotechnique 61(6), 459-471. https://doi.org/10.1680/geot.9.P.114.
    Bauer, E., 1996. Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13-26. https://doi.org/10.3208/sandf.36.13.
    Bauer, E., Safikhani, S., Li, L., 2019. Numerical simulation of the effect of grain fragmentation on the evolution of microstructure quantities. Meccanica 54(4), 631-642. https://doi.org/10.1007/s11012-019-00953-0.
    de Bono, J.P., McDowell, G.R., 2020. On the packing and crushing of granular materials. Int. J. Solid Struct. 187, 133-140. https://doi.org/10.1016/j.ijsolstr.2018.07.011.
    Einav, I., 2007. Breakage mechanicsdPart I: Theory. J. Mech. Phys. Solid. 55(6), 1274-1297. https://doi.org/10.1016/j.jmps.2006.11.003.
    Frossard, É., Hu, W., Dano, C., Hicher, P.Y., 2012. Rockfill shear strength evaluation: A rational method based on size effects. Geotechnique 62(5), 415-427. https://doi.org/10.1680/geot.10.P.079.
    Guo, Q., Chen, X., Liu, H., 2012. Experimental research on shape and size distribution of biomass particle. Fuel 94, 551-555. https://doi.org/ 10.1016/j.fuel.2011.11.041.
    Hunter, G., Fell, R., 2003. Rockfill modulus and settlement of concrete face rockfill dams. J. Geotech. Geoenviron. 129(10), 909-917. https://doi.org/ 10.1061/(ASCE)1090-0241 (2003)129:10(909).
    Lade, P.V., Yamamuro, J.A., Bopp, P.A., 1996. Significance of particle crushing in granular materials. J. Geotech. Eng. 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410 (1996)122:4(309).
    Lee, K.L., Farhoomand, I., 1967. Compressibility and crushing of granular soil in anisotropic triaxial compression. Can. Geotech. J. 4(1), 68-86. https://doi.org/10.1139/t67-012.
    Ma, G., Zhou, W., Chang, X.L., Yuan, W., 2014. Combined FEM/DEM modeling of triaxial compression tests for rockfills with polyhedral particles. Int. J. GeoMech. 14(4), 04014014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000372.
    Marsal, R.J., 1973. Mechanical properties of rockfill. In: Hirschfeld, R.C., Poulos, S.J. (Eds.), Embankment-dam Engineering. John Wiley & Sons, New York, pp. 109-200. https://doi.org/10.1016/0148-9062(75)90138-2.
    McDowell, G.R., Bolton, M.D., Robertson, D., 1996. The fractal crushing of granular materials. J. Mech. Phys. Solid. 44(12), 2079-2102. https://doi.org/10.1016/S0022-5096(96)00058-0.
    Minh, N.H., Cheng, Y.P., 2013. A DEM investigation of the effect of particlesize distribution on one-dimensional compression. Geotechnique 63(1), 44-53. https://doi.org/10.1680/geot.10.P.058.
    Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F., Murata, H., 2001. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41(2), 39-51. https://doi.org/ 10.3208/sandf.41.2_39.
    Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.Y., 2014.The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199-2216. https://doi.org/10.1007/s00707-014-1127-z.
    Pestana, J.M., Whittle, A.J., 1995. Compression model for cohesionless soils.Geotechnique 45(4), 611-631. https://doi.org/10.1680/geot.1995.45. 4.611.
    Rothenburg, L., Bathurst, R.J., 1989. Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601.
    Sammis, C., King, G., Biegel, R., 1987. The kinematics of gouge deformation.Pure Appl. Geophys. 125(5), 777-812. https://doi.org/10.1007/BF00878033.
    Shaebani, M.R., Madadi, M., Luding, S., Wolf, D.E., 2012. Influence of polydispersity on micromechanics of granular materials. Phys. Rev. E 85(1), 011301. https://doi.org/10.1103/PhysRevE.85.011301.
    Shen, C., Liu, S., Wang, Y., 2017. Microscopic interpretation of onedimensional compressibility of granular materials. Comput. Geotech. 91, 161-168. https://doi.org/10.1016/j.compgeo.2017.07.010.
    Shen, C., Liu, S., Wang, L., Wang, Y., 2019a. Micromechanical modeling of particle breakage of granular materials in the framework of thermomechanics. Acta Geotech 14(4), 939-954. https://doi.org/10.1007/s11440-018-0692-z.
    Shen, C., Liu, S., Xu, S., Wang, L., 2019b. Rapid estimation of maximum and minimum void ratios of granular soils. Acta Geotech 14(4), 991-1001.
    https://doi.org/10.1007/s11440-018-0714-x.
    Tyler, S.W., Wheatcraft, S.W., 1992. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 56(2), 362-369.
    https://doi.org/10.2136/sssaj1992.03615995005600020005x.
    Xiao, Y., Liu, H., Chen, Y., Chu, J., 2014a. Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material. J. Geotech. Geoenviron. 140(11), 04014064. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001178.
    Xiao, Y., Liu, H., Chen, Y., Jiang, J., 2014b. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions. J. Eng. Mech. 140(4), 04014002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702.
    Xiao, Y., Coop, M.R., Liu, H., Liu, H., Jiang, J., 2016a. Transitional behaviors in well-graded coarse granular soils. J. Geotech. Geoenviron. 142(12), 06016018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001551.
    Xiao, Y., Liu, H., Ding, X., Chen, Y., Jiang, J., Zhang, W., 2016b. Influence of particle breakage on critical state line of rockfill material. Int. J. GeoMech. 16(1), 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
    Xiao, Y., Long, L., Matthew Evans, T., Zhou, H., Liu, H., Stuedlein, A.W., 2019. Effect of particle shape on stress-dilatancy responses of mediumdense sands. J. Geotech. Geoenviron. 145(2), 04018105. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001994.
    Xu, B., Zou, D., Liu, H., 2012. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model. Comput. Geotech. 43, 143-154. https://doi.org/10.1016/j.compgeo.2012.03.002.
    Yamamuro, J.A., Bopp, P.A., Lade, P.V., 1996. One-dimensional compression of sands at high pressures. J. Geotech. Eng. 122(2), 147-154. https://doi.org/10.1061/(ASCE)0733-9410 (1996)122:2(147).
    Zhang, X., 2015. Particle Breakage in Uniform and Gap-graded Soils. Ph.D.Dissertation. Hong Kong University, Hong Kong.
    Zhang, Y.D., Buscarnera, G., Einav, I., 2016. Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics. Geotechnique 66(2), 149-160. https://doi.org/10.1680/jgeot.15.P.119.
    Zhao, H.F., Zhang, L.M., Chang, D.S., 2013. Behavior of coarse widely graded soils under low confining pressures. J. Geotech. Geoenviron. 139(1), 35-48. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000755.
    Zhou, J.W., Liu, Y., Du, C.L., Liu, S.Y., 2017. Effect of the particle shape and swirling intensity on the breakage of lump coal particle in pneumatic conveying. Powder Technol. 317, 438-448. https://doi.org/10.1016/j.powtec.2017.05.034.
    Zhou, W., Hua, J., Chang, X., Zhou, C., 2011. Settlement analysis of the Shuibuya concrete-face rockfill dam. Comput. Geotech. 38(2), 269-280.https://doi.org/10.1016/j.compgeo.2010.10.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (100) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return