Volume 16 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Zong-xue Xu, Rui Zhang. 2023: Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Science and Engineering, 16(1): 36-44. doi: 10.1016/j.wse.2022.08.002
Citation: Zong-xue Xu, Rui Zhang. 2023: Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Science and Engineering, 16(1): 36-44. doi: 10.1016/j.wse.2022.08.002

Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018

doi: 10.1016/j.wse.2022.08.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 91647202).

  • Received Date: 2022-02-16
  • Accepted Date: 2022-08-10
  • Rev Recd Date: 2022-06-16
  • Extreme climate events threaten human health, economic development, and ecosystems. Many studies have been conducted on extreme precipitation and temperature changes in the Yarlung Zangbo River Basin (YZRB). However, little attention has been paid to compound climate extremes. In this study, the variations of wet/warm compound extreme events in summer and dry/cold compound extreme events in winter over the past 42 years in the YZRB were investigated using eight extreme climate indices that were estimated using monthly temperature and precipitation observations. The results showed that the numbers of frost days and ice days tended to decrease on the spatiotemporal scale, while the maximum values of daily maximum temperature and daily minimum temperature exhibited increasing trends. The frequency of wet/warm compound extreme events was significantly higher from 1998 to 2018 than from 1977 to 1997. Dry/cold compound extreme events became less frequent from 1998 to 2018 than from 1977 to 1997. The rate of increase of wet/warm compound extreme events was about ten times the absolute rate of decrease of dry/cold compound extreme events. With regard to the spatial pattern, the frequency of wet/warm compound extreme events increased significantly in almost all parts of the YZRB, while that of dry/cold compound extreme events decreased across the basin. This study helps to improve our understanding of the changes in compound precipitation and temperature extremes in the YZRB from a multivariable perspective.

     

  • loading
  • Adler, R.F., Gu, G., Wang, J.J., Huffman, G.J., Curtis, S., Bolvin, D., 2008.Relationships between global precipitation and surface temperature on interannual and longer timescales (1979-2006). J. Geophys. Res. 113(D22), D22104. https://doi.org/10.1029/2008jd010536.
    Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111(D5), D05109. https://doi.org/10.1029/2005jd006290.
    Ali, H., Fowler, H.J., Mishra, V., 2018. Global observational evidence of strong linkage between dew point temperature and precipitation extremes.Geophys. Res. Lett. 45(22), 12320-12330. https://doi.org/10.1029/2018gl080557.
    Beniston, M., 2009. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys. Res. Lett. 36(7), L07707. https://doi.org/10.1029/2008gl037119.
    Carrivick, J.L., Brown, I.A., 2008. The application of quicklook NOAA AVHRR satellite imagery in Northern Scandinavia for synoptic weather analyses. Scot. Geogr. J. 117(4), 271-282. https://doi.org/10.1080/ 00369220118737128.
    Choi, G., Collins, D., Ren, G., Trewin, B., Baldi, M., Fukuda, Y., Afzaal, M., Pianmana, T., Gomboluudev, P., Huong, P.T.T., et al., 2009. Changes in means and extreme events of temperature and precipitation in the AsiaePacific Network region, 1955-2007. Int. J. Climatol. 29(13), 1906-1925. https://doi.org/10.1002/joc.1979.
    Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., et al., 2005.Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058), 529-533. https://doi.org/10.1038/nature03972.
    Ding, J., Cuo, L., Zhang, Y., Zhu, F., 2018. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963-2015. Sci. Rep. 8(1), 11860. https://doi.org/10.1038/s41598-018-30320-0.
    Donat, M.G., Lowry, A.L., Alexander, L.V., O'Gorman, P.A., Maher, N., 2016.More extreme precipitation in the world's dry and wet regions. Nat. Clim.Change 6(5), 508-513. https://doi.org/10.1038/nclimate2941.
    Du, H., Wu, Z., Jin, Y., Zong, S., Meng, X., 2012. Quantitative relationships between precipitation and temperature over Northeast China, 1961-2010.Theor. Appl. Climatol. 113(3-4), 659-670. https://doi.org/10.1007/s00704-012-0815-7.
    Gao, X., Guo, M., Yang, Z., Zhu, Q., Xu, Z., Gao, K., 2020. Temperature dependence of extreme precipitation over mainland China. J. Hydrol. 583, 124595. https://doi.org/10.1016/j.jhydrol.2020.124595.
    Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, M.S., Xavier, K., 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314(5804), 1442-1445. https://doi.org/10.1126/science.1132027.
    Hao, Z., AghaKouchak, A., Phillips, T.J., 2013. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 8(3), 034014. https://doi.org/10.1088/1748-9326/8/3/034014.
    Hao, Z., Singh, V., Hao, F., 2018. Compound extremes in hydro-climatology:A review. Water 10(6), 718. https://doi.org/10.3390/w10060718.
    Hegerl, G.C., Hanlon, H., Beierkuhnlein, C., 2011. Elusive extremes. Nat.Geosci. 4(3), 142-143. https://doi.org/10.1038/ngeo1090.
    Huang, Y., Cai, J., Yin, H., Cai, M., 2009. Correlation of precipitation to temperature variation in the Huanghe River (Yellow River) basin during 1957-2006. J. Hydrol. 372(1-4), 1-8. https://doi.org/10.1016/j.jhydrol.2009.03.029.
    IPCC, 2019. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Flood Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press, Cambridge.
    Isaac, G.A., Stuart, R.A., 1992. Temperatureeprecipitation relationships for Canadian stations. J. Clim. 5, 822-830. https://doi.org/10.1175/1520-0442(1992)005<0822:TRFCS>2.0.CO;2.
    Li, B., Zhou, W., Zhao, Y., Ju, Q., Yu, Z., Liang, Z., Acharya, K., 2015. Using the SPEI to assess recent climate change in the Yarlung Zangbo River Basin, South Tibet. Water 7(10), 5474-5486. https://doi.org/10.3390/w7105474.
    Li, F., Zhang, Y., Xu, Z., Teng, J., Liu, C., Liu, W., Mpelasoka, F., 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau. J.Hydrol. 505, 188-201. https://doi.org/10.1016/j.jhydrol.2013.09.052.
    Li, Z., Zheng, F.L., Liu, W.Z., Flanagan, D.C., 2010. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961-2007. Quat. Int. 226(1-2), 92-100.https://doi.org/10.1016/j.quaint.2010.03.003.
    Libanda, B., Bwalya, K., Nkolola, N.B., Chilekana, N., 2020. Quantifying long-term variability of precipitation and temperature over Zambia. J.Atmos. Sol. Terr. Phys. 198, 105201. https://doi.org/10.1016/j.jastp.2020.105201.
    Liu, C., Li, Y., Ji, X., Luo, X., Zhu, M., 2019. Observed changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin during 1970-2017. Atmosphere 10(12), 815. https://doi.org/10.3390/atmos10120815.
    Liu, J., Xu, Z., Bai, J., Peng, D., Ren, M., 2018a. Assessment and correction of the PERSIANN-CDR product in the Yarlung Zangbo River Basin, China.Rem. Sens. 10(12), 2031. https://doi.org/10.3390/rs10122031.
    Liu, J., Xu, Z., Zhao, H., Peng, D., Zhang, R., 2018b. Spatiotemporal variation of extreme precipitation events in the Yarlung Zangbo River Basin from 1973 to 2016, China. Mt. Res. 36(5), 750-764 (in Chinese).
    Liu, Z., Cheng, L., Hao, Z., Li, J., Thorstensen, A., Gao, H., 2018c. A framework for exploring joint effects of conditional factors on compound floods. Water Resour. Res. 54(4), 2681-2696. https://doi.org/10.1002/2017WR021662.
    Martin, J.P., Germain, D., 2017. Large-scale teleconnection patterns and synoptic climatology of major snow-avalanche winters in the Presidential Range (New Hampshire, USA). Int. J. Climatol. 37, 109-123. https://doi.org/10.1002/joc.4985.
    Miao, C., Duan, Q., Sun, Q., Lei, X., Li, H., 2019. Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ. Res. Lett. 14(2), 025004. https://doi.org/10.1088/1748-9326/aaf306.
    Plavcova, E., Urban, A., 2020. Intensified impacts on mortality due to compound winter extremes in the Czech Republic. Sci. Total Environ. 746, 141033. https://doi.org/10.1016/j.scitotenv.2020.141033.
    Ren, M., Pang, B., Xu, Z., Yue, J., Zhang, R., 2019. Downscaling of daily extreme temperatures in the Yarlung Zangbo River Basin using machine learning techniques. Theor. Appl. Climatol. 136(3), 1275-1288. https://doi.org/10.1007/s00704-018-2552-z.
    Ruml, M., Gregoric, E., Vujadinovic, M., Radovanovic, S., Matovic, G., Vukovic, A., Po cu ca, V., Stoji cic, D., 2017. Observed changes of temperature extremes in Serbia over the period 1961-2010. Atmos. Res. 183, 26-41. https://doi.org/10.1016/j.atmosres.2016.08.013.
    Sang, Y.F., Singh, V.P., Gong, T., Xu, K., Sun, F., Liu, C., Liu, W.B., Chen, R.Z., 2016. Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China. J. Geophys. Res. Atmos. 121(15), 8820-8831. https://doi.org/10.1002/2016jd025370.
    Schmidli, J., Frei, C., 2005. Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int. J. Climatol. 25(6), 753-771. https://doi.org/10.1002/joc.1179.
    Sedlmeier, K., Mieruch, S., Sch€adler, G., Kottmeier, C., 2016. Compound extremes in a changing climate: A Markov chain approach. Nonlinear Process Geophys. 23(6), 375-390. https://doi.org/10.5194/npg-23-375-2016.
    Shen, X., Liu, B., Lu, X., Fan, G., 2016. Spatial and temporal changes in daily temperature extremes in China during 1960-2011. Theor. Appl. Climatol. 130(3-4), 933-943. https://doi.org/10.1007/s00704-016-1934-3.
    Shi, J., Cui, L., Wen, K., Tian, Z., Wei, P., Zhang, B., 2018. Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015. Environ. Res. 161, 381-391. https://doi.org/10.1016/j.envres.2017.11.037.
    Song, C., Pei, T., Zhou, C., 2014. The role of changing multiscale temperature variability in extreme temperature events on the eastern and central Tibetan Plateau during 1960-2008. Int. J. Climatol. 34(14), 3683-3701.https://doi.org/10.1002/joc.3935.
    Trenberth, K.E., Shea, D.J., 2005. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32(14), L14703. https://doi.org/10.1029/2005gl022760.
    Utsumi, N., Seto, S., Kanae, S., Maeda, E.E., Oki, T., 2011. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38(16), L16708. https://doi.org/10.1029/2011gl048426.
    Wang, H.J., Sun, J.Q., Chen, H.P., Zhu, Y.L., Zhang, Y., Jiang, D.B., Lang, X.M., Fan, K., Yu, E.T., Yang, S., 2012. Extreme climate in China:Facts, simulation and projection. Meteorol. Z. 21(3), 279-304. https://doi.org/10.1127/0941-2948/2012/0330.
    Wang, J., Yang, B.A.O., Ljungqvist, F.C., Zhao, Y.A.N., 2013a. The relationship between the Atlantic multidecadal oscillation and temperature variability in China during the last millennium. J. Quat. Sci. 28(7), 653-658. https://doi.org/10.1002/jqs.2658.
    Wang, S., Zhang, M., Wang, B., Sun, M., Li, X., 2013b. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973-2011. Quat. Int. 313-314, 110-117. https://doi.org/10.1016/j.quaint. 2013.03.037.
    Wang, Z., Lin, L., Zhang, X., Zhang, H., Liu, L., Xu, Y., 2017. Scenario dependence of future changes in climate extremes under 1.5 C and 2 C global warming. Sci. Rep. 7, 46432. https://doi.org/10.1038/srep46432.
    Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., Langlois, T.J., Bettignies, T., Bennett, S., Rousseaux, C.S., 2012. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3(1), 78-82. https://doi.org/10.1038/nclimate1627.
    Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., He, Y., et al., 2013. A review of climatic controls on d18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 51(4), 525-548. https://doi.org/10.1002/rog.20023.
    Yin, H., Sun, Y., 2018. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Adv. Clim. Change Res. 9(4), 218-226. https://doi.org/10.1016/j.accre.2019.01.001.
    Yin, H., Sun, Y., Donat, M.G., 2019. Changes in temperature extremes on the Tibetan Plateau and their attribution. Environ. Res. Lett. 14(12), 124015.https://doi.org/10.1088/1748-9326/ab503c.
    Zhang, Q., Xu, C.Y., Zhang, Z., Chen, Y.D., Liu, C.L., Lin, H., 2008. Spatial and temporal variability of precipitation maxima during 1960-2005 in the Yangtze River basin and possible association with large-scale circulation.J. Hydrol. 353(3-4), 215-227. https://doi.org/10.1016/j.jhydrol.2007.11.023.
    Zhang, Q., Gu, X., Singh, V.P., Xu, C.Y., Kong, D., Xiao, M., Chen, X.H., 2015. Homogenization of precipitation and flow regimes across China:Changing properties, causes and implications. J. Hydrol. 530, 462-475.https://doi.org/10.1016/j.jhydrol.2015.09.041.
    Zhang, W., Luo, M., Khouakhi, A., Zhang, Wei, Gao, S., Chen, W., Hari, V., Khouakhi, A., 2021. Compound hydrometeorological extremes: Drivers, mechanisms and methods. Front. Earth Sci. 9, 1-21. https://doi.org/10.3389/feart.2021.673495.
    Zhang, X., Yang, F., 2004. RClimDex (1.0) User Manual (vol. 22). Climate Research Branch, Environment Canada, Downsview.
    Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., et al., 2018. Future climate risk from compound events. Nat.Clim. Change 8(6), 469-477. https://doi.org/10.1038/s41558-018-0156-3.
    Zscheischler, J., Naveau, P., Martius, O., Engelke, S., Raible, C.C., 2021.Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth System Dynamics 12, 1-16. https://doi.org/10.5194/esd-12-1-2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (81) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return