Volume 16 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Rosanna van Hespen, Zhan Hu, Bas Borsje, Michela De Dominicis, Daniel A. Friess, Svetlana Jevrejeva, Maarten G. Kleinhans, Maria Maza, Celine E. J. van Bijsterveldt, Tom Van der Stocken, Bregje van Wesenbeeck, Danghan Xie, Tjeerd J. Bouma. 2023: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering, 16(1): 1-13. doi: 10.1016/j.wse.2022.10.004
Citation: Rosanna van Hespen, Zhan Hu, Bas Borsje, Michela De Dominicis, Daniel A. Friess, Svetlana Jevrejeva, Maarten G. Kleinhans, Maria Maza, Celine E. J. van Bijsterveldt, Tom Van der Stocken, Bregje van Wesenbeeck, Danghan Xie, Tjeerd J. Bouma. 2023: Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering, 16(1): 1-13. doi: 10.1016/j.wse.2022.10.004

Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations

doi: 10.1016/j.wse.2022.10.004
Funds:

the ERC H2020 ESTUARIES Project (Grant No. 647570)

odowska-Curie Actions Individual Fellowship (Grant No. 896888)

and the NWO “LIVING DIKES - Realising Resilient and Climate-Proof Coastal Protection” Project (Grant No. NWA.1292.19.257).

Grant No. 51761135022), the Dutch Research Council (NWO

the Guangdong Provincial Department of Science and Technology (Grant No. 2019ZT08G090)

the National Natural Science Foundation of China (Grant No. 42176202)

Grant No. ALWSD. 2016.026), and the Engineering and Physical Sciences Research Council (EPSRC

the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai (Grant No. 311021004)

This work was supported by the Joint Research Project Sustainable Deltas co-funded by the National Natural Science Foundation of China (NSFC

Grant No. EP/R024537/1)

the Horizon 2020 Marie Skł

the China Scholarship Council (Grant No. 201706710005)

the 111 Project (Grant No. B21018)

  • Received Date: 2022-06-30
  • Accepted Date: 2022-10-28
  • Rev Recd Date: 2022-10-19
  • Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk. It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection. However, to use mangroves effectively as a nature-based measure for flood risk reduction, we must understand the biophysical processes that govern risk reduction capacity through mangrove ecosystem size and structure. In this perspective, we evaluate the current state of knowledge on local physical drivers and ecological processes that determine mangrove functioning as part of a nature-based flood defence. We show that the forest properties that comprise coastal flood protection are well-known, but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or surge attenuation. Overall, there is relatively good understanding of the ecological processes that drive forest structure and size, but there is a lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics, and on the role of combined stressors influencing forest retreat. Integrating simulation models of forest structure under changing physical (e.g. due to sea-level change) and ecological drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.

     

  • loading
  • Alleman, L.K., Hester, M.W., 2011. Reproductive ecology of black mangrove(Avicennia germinans)álong the Louisiana Coast: Propagule production cycles, dispersal limitations,ánd establishment elevations. Estuar. Coast. 34, 1068-1077. https://doi.org/10.1007/s12237-011-9404-8.
    Alongi, D.M., 2008. Mangrove forests: Resilience, protection from tsunamis,ánd responses to global climate change. Estuar. Coast. Shelf Sci. 76(1), 1-13. https://doi.org/10.1016/j.ecss.2007.08.024.
    Alongi, D.M., 2015. The impact of climate change on mangrove forests. Curr. Clim. Change Rep. 1, 30-39. https://doi.org/10.1007/s40641-015-0002-x.
    Asbridge, E., Lucas, R., Accad, A., Dowling, R., 2015. Mangrove response to environmental changes predicted under varying climates: Case studies from Australia. Curr. For. Rep. 1, 178-194. https://doi.org/10.1007/s40725-015-0018-4.
    Asbridge, E.F., Bartolo, R., Finlayson, C.M., Lucas, R.M., Rogers, K., Woodroffe, C.D., 2019. Assessing the distributionánd drivers of mangrove dieback in Kakadu National Park, northern Australia. Estuar. Coast. Shelf Sci. 228, 106353. https://doi.org/10.1016/j.ecss.2019.106353.
    Aung, T.T., Mochida, Y., Than, M.M., 2013. Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. For. Ecol. Manag. 293, 103-113. https://doi.org/10.1016/j.foreco. 2012.12.034.
    Azman, MohdS., Sharma, S., Shaharudin, M.A.M., Hamzah, M.L., Adibah, S. N., Zakaria, R.M., MacKenzie, R.A., 2021. Stand structure, biomassánd dynamics of naturally regeneratedánd restored mangroves in Malaysia. For. Ecol. Manag. 482, 118852. https://doi.org/10.1016/j.foreco.2020. 118852.
    Balke, T., Bouma, T., Horstman, E., Webb, E., Erftemeijer, P., Herman, P., 2011. Windows of opportunity: Thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1-9. https://doi.org/10.3354/meps09364.
    Balke, T., Webb, E.L., van den Elzen, E., Galli, D., Herman, P.M.J., Bouma, T.J., 2013. Seedling establishment iná dynamic sedimentary environment: A conceptual framework using mangroves. J. Appl. Ecol. 50, 740-747. https://doi.org/10.1111/1365-2664.12067.
    Balke, T., Swales, A., Lovelock, C.E., Herman, P.M.J., Bouma, T.J., 2015. Limits to seaward expansion of mangroves: Translating physical disturbance mechanisms into seedling survival gradients. J. Exp. Mar. Biol. Ecol. 467, 16-25. https://doi.org/10.1016/j.jembe.2015.02.015.
    Berger, U., Rivera-Monroy, V.H., Doyle, T.W., Dahdouh-Guebas, F., Duke, N. C., Fontalvo-Herazo, M.L., Hildenbrandt, H., Koedam, N., Mehlig, U., etál., 2008. Advancesánd limitations of individual-based models toánalyzeánd predict dynamics of mangrove forests: A review. Aquat. Bot. 89(2), 260-274. https://doi.org/10.1016/j.aquabot.2007.12.015.
    Bhargava, R., Friess, D.A., 2022. Previous shoreline dynamics determine future susceptibility to cyclone impact in the Sundarban Mangrove Forest. Front. Mar. Sci. 9, 814577. https://doi.org/10.3389/fmars.2022. 814577.
    Borsje, B.W., van Wesenbeeck, B.K., Dekker, F., Paalvast, P., Bouma, T.J., van Katwijk, M.M., de Vries, M.B., 2011. How ecological engineering can serve in coastal protection. Ecol. Eng. 37(2), 113-122. https://doi.org/10.1016/j.ecoleng.2010.11.027.
    Bouma, T.J., van Belzen, J., Balke, T., Zhu, Z., Airoldi, L., Blight, A.J., Davies, A.J., Galvan, C., Hawkins, S.J., Hoggart, S.P.G., etál., 2014. Identifying knowledge gaps hamperingápplication of intertidal habitats in coastal protection: Opportunities & steps to take. Coast. Eng. 87, 147-157. https://doi.org/10.1016/j.coastaleng.2013.11.014.
    Bryan-Brown, D.N., Connolly, R.M., Richards, D.R., Adame, F., Friess, D.A., Brown, C.J., 2020. Global trends in mangrove forest fragmentation. Sci. Rep. 10, 7117. https://doi.org/10.1038/s41598-020-63880-1.
    Chen, H., Ni, Y., Li, Y., Liu, F., Ou, S., Su, M., Peng, Y., Hu, Z., Uijttewaal, W., Suzuki, T., 2018. Deriving vegetation drag coefficients in combined wave-current flows by calibrationánd direct measurement methods. Adv. Water Resour. 122, 217-227. https://doi.org/10.1016/j.advwatres.2018.10.008.
    CIRIA, Ministere de l’Ecologie, du Developpement durable et de l’Energie, US Army Corps of Engineers, 2013. The International Levee Handbook. CIRIA C. CIRIA, London.
    Clarke, P.J., 1992. Predispersal mortalityánd fecundity in the grey mangrove(Avicennia marina) in southeastern Australia. Aust. J. Ecol. 17(2), 161-168. https://doi.org/10.1111/j.1442-9993.1992.tb00794.x.
    Clarke, P.J., 1995. The population dynamics of the mangrove Avicennia marina; demographic synthesisánd predictive modelling. Hydrobiologia 295, 83-88. https://doi.org/10.1007/BF00029114.
    Clough, B.F., Dixon, P., Dalhaus, O., 1997. Allometric relationships for estimating biomass in multi-stemmed mangrove trees. Aust. J. Bot. 45(6), 1023-1031. https://doi.org/10.1071/bt96075.
    Dalrymple, R.A., Kirby, J.T., Hwang, P.A., 1984. Wave diffraction due toáreas of energy dissipation. J. Waterw. Port Coast. Ocean Eng. 110(1), 67-79.https://doi.org/10.1061/(ASCE)0733-950X, 1984)110:1(67.
    Dasgupta, S., Islam, MdS., Huq, M., Huque Khan, Z., Hasib, MdR., 2019. Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh. PLoS One 14, e0214079. https://doi.org/10.1371/journal.pone.0214079.
    De Dominicis, M., Wolf, J., Jevrejeva, S., Zheng, P., Hu, Z., 2020. Future interactions between sea level rise, tides,ánd storm surges in the World's largest urbanárea. Geophys. Res. Lett. 47(4), e2020GL087002. https:// doi.org/10.1029/2020GL087002.
    de Smit, J.C., Kleinhans, M.G., Gerkema, T., Timmermans, K.R., Bouma, T.J., 2020. Introducing the TiDyWAVE field flume: A method to quantify natural ecosystem resilienceágainst future storm waves. Limnol. Oceanogr. Methods 18(10), 585-598. https://doi.org/10.1002/lom3.10386.
    Debrot, A.O., Plas, A., Boesono, H., Prihantoko, K., Baptist, M.J., Murk, A.J., Tonneijck, F.H., 2022. Early increases inártisanal shore-based fisheries iná nature-based solutions mangrove rehabilitation project on the north coast of Java. Estuar. Coast. Shelf Sci. 267, 107761. https://doi.org/10.1016/j.ecss.2022.107761.
    Duke, N., 1990. Phenological trends with latitude in the mangrove tree Avicennia Marina. J. Ecol. 78(1), 113-133. https://doi.org/10.2307/2261040.
    Duke, N., Mackenzie, J., Hutley, L., Staben, G., Brouke, A., 2020. Assessing the Gulf of Carpentaria Mangrove Dieback 2017-2019, Volume 2: Field Studies. James Cook University, Townsville.
    Ellison, J.C., Buffington, K.J., Thorne, K.M., Gesch, D., Irwin, J., Danielson, J., 2022. Elevations of mangrove forests of Pohnpei, Micronesia. Estuar. Coast. Shelf Sci. 268, 107780. https://doi.org/10.1016/j.ecss.2022.107780.
    Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the coupled model Intercomparison Project Phase 6 (CMIP6) experimental designánd organization. Geosci.Model Dev. (GMD) 9, 1937-1958. https://doi.org/10.5194/gmd-9-1937-2016.
    Friess, D.A., Adame, M.F., Adams, J.B., Lovelock, C.E., 2022. Mangrove forests under climate change iná 2 C world. WIREs Clim. Change 13(4), e792. https://doi.org/10.1002/wcc.792.
    Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S.J., Peltola, H., Ruel, J.-C., 2008. A review of mechanistic modelling of wind damage risk to forests. Forestry 81(3), 447-463. https://doi.org/10.1093/forestry/cpn022.
    Gijsman, R., Horstman, E.M., van der Wal, D., Friess, D.A., Swales, A., Wijnberg, K.M., 2021. Nature-based engineering: A review on reducing coastal flood risk with mangroves. Front. Mar. Sci. 8, 702412. https://doi.org/10.3389/fmars.2021.702412.
    Gutowski Jr., W.J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., etál., 2016. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. (GMD) 9, 4087-4095. https://doi.org/10.5194/gmd-9-4087-2016.
    Hall e, F., Oldeman, R.A.A., Tomlinson, P.B., 1978. Elements of treeárchitecture. In: Hall e, F., Oldeman, R.A.A., Tomlinson, P.B. (Eds.), Tropical Treesánd Forests: An Architectural Analysis. Springer, Berlin, Heidelberg, pp. 13-73.
    He, B., Lai, T., Fan, H., Wang, W., Zheng, H., 2007. Comparison of floodingtolerance in four mangrove species iná diurnal tidal zone in the Beibu Gulf. Estuar. Coast. Shelf Sci. 74(1-2), 254-262. https://doi.org/10.1016/j.ecss.2007.04.018.
    Hinkel, J., Lincke, D., Vafeidis, A.T., Perrette, M., Nicholls, R.J., Tol, R.S.J., Marzeion, B., Fettweis, X., Ionescu, C., Levermann, A., 2014. Coastal flood damageándádaptation costs under 21st century sea-level rise. Proc.Natl. Acad. Sci. USA 111(9), 3292-3297. https://doi.org/10.1073/pnas. 1222469111.
    Horstman, E.M., Dohmen-Janssen, C.M., Narra, P.M.F., van den Berg, N.J.F., Siemerink, M., Hulscher, S.J.M.H., 2014. Waveáttenuation in mangroves:A quantitativeápproach to field observations. Coast. Eng. 94, 47-62.https://doi.org/10.1016/j.coastaleng.2014.08.005.
    Horstman, E.M., Bryan, K.R., Mullarney, J.C., Pilditch, C.A., Eager, C.A., 2018. Are flow-vegetation interactions well represented by mimics? A case study of mangrove pneumatophores. Adv. Water Resour. 111, 360-371.https://doi.org/10.1016/j.advwatres.2017.11.018.
    Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W., Stive, M., 2014. Laboratory study on wave dissipation by vegetation in combined currentewave flow. Coast. Eng. 88, 131-142. https://doi.org/10.1016/j.coastaleng.2014.02.009.
    Hu, Z., van Belzen, J., van der Wal, D., Balke, T., Wang, Z.B., Stive, M., Bouma, T.J., 2015. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: The importance of temporalánd spatial variability in hydrodynamic forcing. J. Geophys. Res.: Biogeosciences 120(7), 1450-1469. https://doi.org/10.1002/2014JG002870.
    Hu, Z., Zhou, J., Wang, C., Wang, H., He, Z., Peng, Y., Zheng, P., Cozzoli, F., Bouma, T.J., 2020. A novel instrument for bed dynamics observation supports machine learningápplications in mangrove biogeomorphic processes. Water Resour. Res. 56(7), e2020WR027257. https://doi.org/10.1029/2020WR027257.
    Hu, Z., Borsje, B.W., Belzen, J., Willemsen, P.W.J.M., Wang, H., Peng, Y., Yuan, L., De Dominicis, M., Wolf, J., Temmerman, S., etál., 2021a. Mechanistic modeling of marsh seedling establishment providesá positive outlook for coastal wetland restoration under global climate change. Geophys. Res. Lett. 48(22), e2021GL095596. https://doi.org/10.1029/2021GL095596.
    Hu, Z., Lian, S., Wei, H., Li, Y., Stive, M., Suzuki, T., 2021b. Laboratory data on wave propagation through vegetation with followingánd opposing currents. Earth Syst. Sci. Data 13, 4987-4999. https://doi.org/10.5194/essd-13-4987-2021.
    Hu, Z., Lian, S., Zitman, T., Wang, H., He, Z., Wei, H., Ren, L., Uijttewaal, W., Suzuki, T., 2022. Wave breaking induced by opposing currents in submerged vegetation canopies. Water Resour. Res. 58(4), e2021WR031121. https://doi.org/10.1029/2021WR031121.
    IPCC, 2022. Climate Change 2022: Impacts, Adaptation,ánd Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    Jevrejeva, S., Frederikse, T., Kopp, R.E., Le Cozannet, G., Jackson, L.P., van de Wal, R.S.W., 2019. Probabilistic sea level projectionsát the coast by 2100. Surv. Geophys. 40, 1673-1696. https://doi.org/10.1007/s10712-019-09550-y.
    Jimenez, J.A., Lugo, A.E., Cintron, G., 1985. Tree mortality in mangrove forests. Biotropica 17(3), 177-185. https://doi.org/10.2307/2388214.
    Kalloe, S.A., Hofland, B., Antolínez, J.A.A., van Wesenbeeck, B.K., 2022. Quantifying frontal-surfaceárea of woody vegetation: A crucial parameter for waveáttenuation. Front. Mar. Sci. 9, 820846. https://doi.org/10.3389/fmars.2022.820846.
    Koch, E.W., Barbier, E.B., Silliman, B.R., Reed, D.J., Perillo, G.M., Hacker, S.D., Granek, E.F., Primavera, J.H., Muthiga, N., Polasky, S., etál., 2009. Non-linearity in ecosystem services: Temporalánd spatial variability in coastal protection. Front. Ecol. Environ. 7, 29-37. https://doi.org/10.1890/080126.
    Krauss, K.W., Osland, M.J., 2020. Tropical cyclonesánd the organization of mangrove forests: A review. Ann. Bot. 125(2), 213-234. https://doi.org/10.1093/aob/mcz161.
    Krauss, K.W., Keeland, B.D., Allen, J.A., Ewel, K.C., Johnson, D.J., 2007.Effects of season, rainfall,ánd hydrogeomorphic setting on mangrove tree growth in Micronesia. Biotropica 39(2), 161-170. https://doi.org/10.1111/
    j.1744-7429.2006.00259.x.
    Krauss, K.W., Lovelock, C.E., McKee, K.L., L opez-Hoffman, L., Ewe, S.M.L., Sousa, W.P., 2008. Environmental drivers in mangrove establishmentánd early development: A review. Aquat. Bot. 89(2), 105-127. https://doi.org/10.1016/j.aquabot.2007.12.014.
    Kulp, S.A., Strauss, B.H., 2019. New elevation data triple estimates of global vulnerability to sea-level riseánd coastal flooding. Nat. Commun. 10, 4844. https://doi.org/10.1038/s41467-019-12808-z.
    Lee, W.K., Tay, S.H.X., Ooi, S.K., Friess, D.A., 2021. Potential short waveáttenuation function of disturbed mangroves. Estuar. Coast. Shelf Sci. 248, 106747. https://doi.org/10.1016/j.ecss.2020.106747.
    Liu, H., Zhang, K., Li, Y., Xie, L., 2013. Numerical study of the sensitivity of mangroves in reducing storm surgeánd flooding to hurricane characteristics in southern Florida. Continent. Shelf Res. 64, 51-65. https://doi.org/10.1016/j.csr.2013.05.015.
    Liu, P.L.-F., Chang, C.-W., Mei, C.C., Lomonaco, P., Martin, F.L., Maza, M., 2015. Periodic water waves throughánáquatic forest. Coast. Eng. 96, 100-117. https://doi.org/10.1016/j.coastaleng.2014.11.002.
    Losada, I.J., Maza, M., Lara, J.L., 2016. A new formulation for vegetationinduced damping under combined wavesánd currents. Coast. Eng. 107, 1-13. https://doi.org/10.1016/j.coastaleng.2015.09.011.
    Lovelock, C.E., Feller, I.C., Ball, M.C., Engelbrecht, B.M.J., Ewe, M.L., 2006.Differences in plant function in phosphorus-ánd nitrogen-limited mangrove ecosystems. New Phytol. 172(3), 514-522. https://doi.org/10.1111/j.1469-8137.2006.01851.x.
    Lovelock, C.E., Cahoon, D.R., Friess, D.A., Guntenspergen, G.R., Krauss, K.W., Reef, R., Rogers, K., Saunders, M.L., Sidik, F., Swales, A., etál., 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559-563. https://doi.org/10.1038/nature15538.
    Lovelock, C.E., Feller, I.C., Reef, R., Hickey, S., Ball, M.C., 2017. Mangrove dieback during fluctuating sea levels. Sci. Rep. 7, 1680. https://doi.org/10.1038/s41598-017-01927-6.
    Maza, M., Lara, J.L., Losada, I.J., Ondiviela, B., Trinogga, J., Bouma, T.J., 2015. Large-scale 3-D experiments of waveánd current interaction with real vegetation. Part 2: Experimentalánalysis. Coast. Eng. 106, 73-86.https://doi.org/10.1016/j.coastaleng.2015.09.010.
    Maza, M., Adler, K., Ramos, D., Garcia, A.M., Nepf, H., 2017. Velocityánd drag evolution from the leading edge ofá model mangrove forest. J.Geophys. Res.: Oceans 122(11), 9144-9159. https://doi.org/10.1002/ 2017JC012945.
    Maza, M., Lara, J.L., Losada, I.J., 2019. Experimentalánalysis of waveáttenuationánd drag forces iná realistic fringe Rhizophora mangrove forest. Adv. Water Resour. 131, 103376. https://doi.org/10.1016/j.advwatres.2019.07.006.
    Maza, M., Lara, J.L., Losada, I.J., 2021. Predicting the evolution of coastal protection service with mangrove forestáge. Coast. Eng. 168, 103922.https://doi.org/10.1016/j.coastaleng.2021.103922.
    Mazda, Y., Wolanski, E., King, B., Sase, A., Ohtsuka, D., Magi, M., 1997.Drag force due to vegetation in mangrove swamps. Mangroves Salt Marshes 1, 193-199. https://doi.org/10.1023/A:1009949411068.
    Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T., Asano, T., 2006. Wave reduction iná mangrove forest dominated by Sonneratia sp. Wetl. Ecol.Manag. 14, 365-378. https://doi.org/10.1007/s11273-005-5388-0.
    McIvor, A.L., Spencer, T., Möller, I., Spalding, M., 2012. Storm Surge Reduction by Mangroves. Natural Coastal Protection Series: Report 2. The Nature Conservancyánd Wetlands International. http://www.naturalcoastalprotection.org/documents/storm-surge-reduction-bymangroves.
    McIvor, A., Spencer, T., Spalding, M., Lacambra, C., Möller, I., 2015. Chapter 14 - mangroves, tropical cyclones,ánd coastal hazard risk reduction. In:Shroder, J.F., Ellis, J.T., Sherman, D.J. (Eds.), Coastalánd Marine Hazards, Risks,ánd Disasters. Elsevier, Amsterdam, pp. 403-429. https://doi.org/10.1016/B978-0-12-396483-0.00014-5.
    Men endez, P., Losada, I.J., Torres-Ortega, S., Narayan, S., Beck, M.W., 2020.The global flood protection benefits of mangroves. Sci. Rep. 10, 4404.https://doi.org/10.1038/s41598-020-61136-6.
    Montgomery, J.M., Bryan, K.R., Horstman, E.M., Mullarney, J.C., 2018. Attenuation of tidesánd surges by mangroves: Contrasting case studies from New Zealand. Water 10(9), 1119. https://doi.org/10.3390/w10091119.
    Morison, J.R., Johnson, J.W., Schaaf, S.A., 1950. The force exerted by surface waves on piles. J. Petrol. Technol. 2(5), 149-154. https://doi.org/10.2118/ 950149-G.
    Njana, M.A., 2020. Structure, growth,ánd sustainability of mangrove forests of mainland Tanzania. Global Ecol. Conserv. 24, e01394. https://doi.org/10.1016/j.gecco.2020.e01394.
    Paul, M., Bouma, T., Amos, C., 2012. Waveáttenuation by submerged vegetation: Combining the effect of organism traitsánd tidal current. Mar.Ecol. Prog. Ser. 444, 31-41. https://doi.org/10.3354/meps09489.
    Peters, R., Vovides, A.G., Luna, S., Grüters, U., Berger, U., 2014. Changes inállometric relations of mangrove trees due to resourceávailability — A new mechanistic modellingápproach. Ecol. Model. 283, 53-61. https://doi.org/10.1016/j.ecolmodel.2014.04.001.
    Peters, R., Walther, M., Lovelock, C., Jiang, J., Berger, U., 2020. The interplay between vegetationánd water in mangroves: New perspectives for mangrove stand modellingánd ecological research. Wetl. Ecol. Manag. 28, 697-712. https://doi.org/10.1007/s11273-020-09733-0.
    Peterson, J.M., Bell, S.S., 2015. Saltmarsh boundary modulates dispersal of mangrove propagules: Implications for mangrove migration with sea-level rise. PLoS One 10, e0119128. https://doi.org/10.1371/journal.pone.0119128.
    Proffitt, C.E., Milbrandt, E.C., Travis, S.E., 2006. Red mangrove (Rhizophora mangle) reproductionánd seedling colonizationáfter Hurricane charley:Comparisons of charlotte Harboránd Tampa Bay. Estuar. Coast 29, 972-978. https://doi.org/10.1007/BF02798658.
    Putz, F.E., Chan, H.T., 1986. Tree growth, dynamics,ánd productivity iná mature mangrove forest in Malaysia. For. Ecol. Manag. 17(2-3), 211-230. https://doi.org/10.1016/0378-1127(86)90113-1.
    Quadros, A., Zimmer, M., 2017. Dataset of “true mangroves” plant species traits. Biodivers. Data J. 5, e22089. https://doi.org/10.3897/BDJ.5.e22089.
    Quang Bao, T., 2011. Effect of mangrove forest structures on waveáttenuation in coastal Vietnam. Oceanologia 53, 807-818. https://doi.org/10.5697/oc.53-3.807.
    Rahman, MdM., 2020. Impact of increased salinity on the plant community of the Sundarbans Mangrove of Bangladesh. Community Ecol. 21, 273-284.https://doi.org/10.1007/s42974-020-00028-1.
    Rennenberg, H., Loreto, F., Polle, A., Brilli, F., Fares, S., Beniwal, R.S., Gessler, A., 2006. Physiological responses of forest trees to heatánd drought. Plant Biol. 8(5), 556-571. https://doi.org/10.1055/s-2006-924084.
    Sánchez-Núñez, D.A., Bernal, G., Mancera Pineda, J.E., 2019. The relative role of mangroves on wave erosion mitigationánd sediment properties. Estuar.Coast. 42, 2124-2138. https://doi.org/10.1007/s12237-019-00628-9.
    Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in ecosystems. Nature 413, 591-596. https://doi.org/10.1038/35098000.
    Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M.L., Wolff, C., Lincke, D., McOwen, C.J., Pickering, M.D., Reef, R., Vafeidis, A.T., etál., 2018. Future response of global coastal wetlands to sea-level rise. Nature 561, 231-234. https://doi.org/10.1038/s41586-018-0476-5.
    Sheng, Y.P., Lapetina, A., Ma, G., 2012. The reduction of storm surge by vegetation canopies: Three-dimensional simulations. Geophys. Res. Lett. 39(20), L20601. https://doi.org/10.1029/2012GL053577.
    Sherman, R.E., Fahey, T.J., Battles, J.J., 2000. Small-scale disturbanceánd regeneration dynamics iná neotropical mangrove forest. J. Ecol. 88(1), 165-178. https://doi.org/10.1046/j.1365-2745.2000.00439.x.
    Sillanp€a€a, M., Vantellingen, J., Friess, D.A., 2017. Vegetation regeneration iná sustainably harvested mangrove forest in West Papua, Indonesia. For. Ecol.Manag. 390, 137-146. https://doi.org/10.1016/j.foreco.2017.01.022.
    Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., CastañedaMoya, E., Thomas, N., Van der Stocken, T., 2019. Mangrove canopy height globally related to precipitation, temperatureánd cyclone frequency. Nat.Geosci. 12, 40-45. https://doi.org/10.1038/s41561-018-0279-1.
    Sippo, J.Z., Lovelock, C.E., Santos, I.R., Sanders, C.J., Maher, D.T., 2018. Mangrove mortality iná changing climate: An overview. Estuar.Coast Shelf Sci. 215, 241-249. https://doi.org/10.1016/j.ecss.2018.10.011.
    Sloey, T.M., Lim, K.E., Moore, J., Heng, J.M., Heng, J.M., van Breugel, M., 2022. Influence ofábiotic drivers on 1-year seedling survival of six mangrove species in Southeast Asia. Restor. Ecol. 30(8), e13694. https://doi.org/10.1111/rec.13694.
    Taillie, P.J., Roman-Cuesta, R., Lagomasino, D., Cifuentes-Jara, M., Fatoyinbo, T., Ott, L.E., Poulter, B., 2020. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res.Lett. 15(6), 064010. https://doi.org/10.1088/1748-9326/ab82cf.
    Tanaka, K., 2008. Effectivenessánd Limitation of the Coastal Vegetation for Storm Surge Disaster Mitigation, Investigation Report on the Storm Surge Disaster by Cyclone SIDR in 2007, Bangladesh. Japan Society of Civil Engineering, Tokyo.
    Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaert, T., De Vriend, H.J., 2013. Ecosystem-based coastal defence in the face of global change. Nature 504, 79-83. https://doi.org/10.1038/nature12859.
    Temmink, R.J.M., Lamers, L.P.M., Angelini, C., Bouma, T.J., Fritz, C., van de Koppel, J., Lexmond, R., Rietkerk, M., Silliman, B.R., Joosten, H., etál., 2022. Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science 376, eabn1479. https://doi.org/10.1126/science.abn1479.
    Tomlinson, P.B., 2016. The Botany of Mangroves. Cambridge University Press, Cambridge.Uddin, M.M., Hossain, M.M., Aziz, A.A., Lovelock, C.E., 2022. Ecological development of mangrove plantations in the Bangladesh Delta. For. Ecol.Manag. 517, 120269. https://doi.org/10.1016/j.foreco.2022.120269.
    UN Environmental Program (UNEP), 2020. The Triple Planetary Crisis:Forgingá New Relationship between Peopleánd the Earth. UNEP. https://www.unep.org/news-and-stories/speech/triple-planetary-crisis-forgingnew-relationship-between-people-and-earth.
    van Bijsterveldt, C.E.J., van Wesenbeeck, B.K., van der Wal, D., Afiati, N., Pribadi, R., Brown, B., Bouma, T.J., 2020. How to restore mangroves for greenbelt creationálong eroding coasts withábandonedáquaculture ponds.Estuar. Coast. Shelf Sci. 235, 106576. https://doi.org/10.1016/j.ecss.2019.106576.
    van Bijsterveldt, C.E.J., van Wesenbeeck, B.K., Ramadhani, S., Raven, O.V., van Gool, F.E., Pribadi, R., Bouma, T.J., 2021. Does plastic waste kill mangroves? A field experiment toássess the impact of macro plastics on mangrove growth, stress responseánd survival. Sci. Total Environ. 756, 143826. https://doi.org/10.1016/j.scitotenv.2020.143826.
    van Bijsterveldt, C.E.J., Debrot, A.O., Bouma, T.J., Maulana, M.B., Pribadi, R., Schop, J., Tonneijck, F.H., van Wesenbeeck, B.K., 2022. To plant or not to plant: When can planting facilitate mangrove restoration?Front. Environ. Sci. 9, 690011. https://doi.org/10.3389/fenvs.2021.690011.
    Van Coppenolle, R., Schwarz, C., Temmerman, S., 2018. Contribution of mangrovesánd salt marshes to nature-based mitigation of coastal flood risks in major deltas of the world. Estuar. Coast. 41, 1699-1711. https://doi.org/10.1007/s12237-018-0394-7.
    Van der Stocken, T., Wee, A.K.S., De Ryck, D.J.R., Vanschoenwinkel, B., Friess, D.A., Dahdouh-Guebas, F., Simard, M., Koedam, N., Webb, E.L., 2019. A general framework for propagule dispersal in mangroves: A general framework for propagule dispersal in mangroves. Biol. Rev. 94(4), 1547-1575. https://doi.org/10.1111/brv.12514.
    van Hespen, R., Hu, Z., Peng, Y., Borsje, B.W., Kleinhans, M., Ysebaert, T., Bouma, T.J., 2021. Analysis of coastal storm damage resistance in successional mangrove species. Limnol. Oceanogr. 66(8), 3221-3236. https://doi.org/10.1002/lno.11875.
    van Hespen, R., Hu, Z., Peng, Y., Zhu, Z., Ysebaert, T., Bouma, T.J., 2022.Identifying trait-based tolerance to sediment dynamics during seedling establishmentácross eight mangrove species. Limnol. Oceanogr. 67(10), 2282-2295. https://doi.org/10.1002/lno.12202.
    van Veelen, T.J., Karunarathna, H., Reeve, D.E., 2021. Modelling waveáttenuation by quasi-flexible coastal vegetation. Coast. Eng. 164, 103820.https://doi.org/10.1016/j.coastaleng.2020.103820.
    van Wesenbeeck, B.K., Wolters, G., Antolínez, J.A.A., Kalloe, S.A., Hofland, B., de Boer, W.P., Çete, C., Bouma, T.J., 2022. Waveáttenuation through forests under extreme conditions. Sci. Rep. 12, 1884. https://doi.org/10.1038/s41598-022-05753-3.
    van Zelst, V.T.M., Dijkstra, J.T., van Wesenbeeck, B.K., Eilander, D., Morris, E.P., Winsemius, H.C., Ward, P.J., de Vries, M.B., 2021. Cutting the costs of coastal protection by integrating vegetation in flood defences.Nat. Commun. 12, 6533. https://doi.org/10.1038/s41467-021-26887-4.
    Vollsinger, S., Mitchell, S.J., Byrne, K.E., Novak, M.D., Rudnicki, M., 2005.Wind tunnel measurements of crown streamliningánd drag relationships for several hardwood species. Can. J. For. Res. 35(5), 1238-1249. https://doi.org/10.1139/x05-051.
    Walters, C.J., 1986. Adaptive Management of Renewable Resources. Macmillan Publishers, New York.Ward, R.D., Friess, D.A., Day, R.H., Mackenzie, R.A., 2016. Impacts of climate change on mangrove ecosystems: A region by region overview.Ecosys. Health Sustain. 2(4), e01211. https://doi.org/10.1002/ehs2.1211.
    Waryszak, P., Palacios, M.M., Carnell, P.E., Yilmaz, I.N., Macreadie, P.I., 2021. Planted mangroves cap toxic petroleum-contaminated sediments.Mar. Pollut. Bull. 171, 112746. https://doi.org/10.1016/j.marpolbul.2021.112746.
    Watson, J.G., 1928. Mangrove Forests of the Malay Peninsula. Malayan Forest Record 6.
    Willemsen, P.W.J.M., Borsje, B.W., Hulscher, S.J.M.H., Van der Wal, D., Zhu, Z., Oteman, B., Evans, B., Möller, I., Bouma, T.J., 2018. Quantifying bed level changeát the transition of tidal flatánd salt marsh: Can we understand the lateral location of the marsh edge? J. Geophys. Res.: Earth Surf. 123(10), 2509-2524. https://doi.org/10.1029/2018JF004742.
    Woodroffe, C.D., Rogers, K., McKee, K.L., Lovelock, C.E., Mendelssohn, I.A., Saintilan, N., 2016. Mangrove sedimentationánd response to relative sea-level Rise. Ann. Rev. Mar. Sci 8, 243-266. https://doi.org/10.1146/annurev-marine-122414-034025.
    Xie, D., Schwarz, C., Brückner, M.Z.M., Kleinhans, M.G., Urrego, D.H., Zhou, Z., van Maanen, B., 2020. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacksándánthropogenic pressures. Environ. Res. Lett. 15(11), 114033. https://doi.org/10.1088/1748-9326/abc122.
    Xie, D., Schwarz, C., Kleinhans, M.G., Zhou, Z., van Maanen, B., 2022.Implications of coastal conditionsánd sea-level rise on mangrove vulnerability: A bio-morphodynamic modeling study. J. Geophys. Res.:Earth Surf. 127(3), e2021JF006301. https://doi.org/10.1029/ 2021JF006301.
    Xu, H., Zhang, K., Shen, J., Li, Y., 2010. Storm surge simulationálong the U.S. Eastánd Gulf Coasts usingá multi-scale numerical modelápproach.Ocean Dynam. 60, 1597-1619. https://doi.org/10.1007/s10236-010-0321-3.
    Yao, P., Chen, H., Huang, B., Tan, C., Hu, Z., Ren, L., Yang, Q., 2018.Applyingá new forceevelocity synchronizingálgorithm to derive drag coefficients of rigid vegetation in oscillatory flows. Water 10(7), 906.https://doi.org/10.3390/w10070906.
    Ysebaert, T., Yang, S.-L., Zhang, L., He, Q., Bouma, T.J., Herman, P.M.J., 2011. Waveáttenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. Wetlands 31, 1043-1054. https://doi.org/10.1007/s13157-011-0240-1.
    Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., Smith, T.J., 2012. The role of mangroves ináttenuating storm surges. Estuar. Coast. Shelf Sci. 102(103), 11-23. https://doi.org/10.1016/j.ecss.2012.02.021.
    Zhu, Z., Vuik, V., Visser, P.J., Soens, T., van Wesenbeeck, B., van de Koppel, J., Jonkman, S.N., Temmerman, S., Bouma, T.J., 2020. Historic stormsánd the hidden value of coastal wetlands for nature-based flood defence. Nat.Sustain. 3, 853-862. https://doi.org/10.1038/s41893-020-0556-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (175) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return