Volume 16 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
Heng-zhi Jiang, Yong-peng Ji, Ming-liang Zhang. 2023: Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea. Water Science and Engineering, 16(1): 26-35. doi: 10.1016/j.wse.2022.10.005
Citation: Heng-zhi Jiang, Yong-peng Ji, Ming-liang Zhang. 2023: Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea. Water Science and Engineering, 16(1): 26-35. doi: 10.1016/j.wse.2022.10.005

Modeling impact of culture facilities on hydrodynamics and solute transport in marine aquaculture waters of North Yellow Sea

doi: 10.1016/j.wse.2022.10.005
Funds:

Current reduction

Numerical simulation

Marine aquaculture

Suspended cages

Solute transport

  • Received Date: 2021-12-30
  • Accepted Date: 2022-11-01
  • Rev Recd Date: 2022-10-18
  • An increasing number of marine aquaculture facilities have been placed in shallow bays and open sea, which might significantly affect hydrodynamic and solute transport processes in marine aquaculture waters. In this study, a coupled hydrodynamic and solute transport model was developed with high-resolution schemes in marine aquaculture waters based on depth-averaged shallow water equations. A new expression of drag force was incorporated into the momentum equations to express the resistance of suspended culture cages. The coupled model was used to simulate the effect of suspended structures on tidal currents and the movement of a contaminant cloud in the marine aquaculture of the North Yellow Sea, China. The simulation results showed a low-velocity area appearing inside the aquaculture cage area, with a maximum reduction rate of velocity close to 45% under high-density culture. The results also showed that tidal currents were sensitive to the density of suspended cages, the length of cages, and the drag coefficients of cages. The transport processes of pollutants inside aquaculture facilities were inhibited away from the vicinity of the culture cage area because of the diminished tidal currents. Therefore, the suspended cages significantly affected the transport processes of pollutants in the coastal aquaculture waters. Furthermore, the reduced horizontal velocity significantly decreased the food supply for the aquaculture areas from the surrounding sea.

     

  • loading
  • Ai, Y.D., Liu, M.Y., Huai, W.X., 2020. Numerical investigation of flow with floating vegetation island. J. Hydrodyn. 32(1), 31-43. https://doi.org/10.1007/s42241-020-0004-6.
    Ali, A., Thiem, Ø., Berntsen, J., 2011. Numerical modelling of organic waste dispersion from fjord located fish farms. Ocean Dynam. 61, 977-989.https://doi.org/10.1007/s10236-011-0393-8.
    Blanco, J., Zapata, M., Moroño, A., 1996. Some aspects of the water flow through mussel rafts. Sci. Mar. 60(2-3), 275-282. https://doi.org/10.1016/ 0025-326X(96)00007-0.
    Cheng, W.W., Sun, Z.C., Liang, S.X., 2019. Numerical simulation of flow through suspended and submerged canopy. Adv. Water Resour. 127, 109-119. https://doi.org/10.1016/j.advwatres.2019.01.008.
    Cornejo, P., Sepúlveda, H.H., Guti errez, M.H., Olivares, G., 2014. Numerical studies on the hydrodynamic effects of a salmon farm in an idealized environment. Aquaculture 430, 195-206. https://doi.org/10.1016/j.aquaculture.2014.04.015.
    Delaux, S., Stevens, C.L., Popinet, S., 2011. High-resolution computational fluid dynamics modeling of suspended shellfish structures. Environ. Fluid Mech. 11, 405-425. https://doi.org/10.1007/s10652-010-9183-y.
    Dudley, R.W., Panchang, V.G., Newell, C.R., 2000. Application of a comprehensive modeling strategy for the management of net-pen aquaculture waste transport. Aquaculture 187(3-4), 319-349. https://doi.org/10.1016/S0044-8486(00)00313-6.
    Fan, X., Wei, H., Yuan, Y., Zhao, L., 2009. Vertical structure of tidal current in a typically coastal raft-culture area. Continent. Shelf Res. 29(20), 2345-2357. https://doi.org/10.1016/j.csr.2009.10.007.
    Ferreira, J.G., Saurel, C., Lencart e Silva, J.D., Nunes, J.P., Vazquez, F., 2014.Modelling of interactions between inshore and offshore aquaculture.Aquaculture 426-427, 154-164. https://doi.org/10.1016/j.aquaculture.2014.01.030.
    Gentry, R.R., Froehlich, H.E., Grimm, D., Kareiva, P., Halpern, B.S., 2017.Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317-1324. https://doi.org/10.1038/s41559-017-0257-9.
    Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science 327(5967), 812-818. https://doi.org/10.1126/science.1185383.
    Grant, J., Bacher, C., 2001. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can. J. Fish. Aquat. Sci. 58(5), 1003-1011. https://doi.org/10.1139/cjfas-58-5-1003.
    James, S.C., O'Donncha, F., 2019. Drag coefficient parameter estimation for aquaculture systems. Environ. Fluid Mech. 19, 989-1003. https://doi.org/10.1007/s10652-019-09697-7.
    Johansson, D., Juell, J., Oppedal, F., Stiansen, J., Ruohonen, K., 2007. The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behavior of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture 265(1-4), 271-287. https://doi.org/10.1016/j.aquaculture.2006.12.047.
    Liang, D.F., Wang, X.L., Roger, A.F., Bockelmann-Evans, B.N., 2010. Solving the depth-integrated solute transport equation with a TVD-MacCormack scheme. Environ. Model. Software 25(12), 1619-1629. https://doi.org/10.1016/j.envsoft.2010.06.008.
    Lin, H.Y., Chen, Z.Z., Hu, J.Y., Cucco, A., Sun, Z.Y., Chen, X.R., Huang, L.F., 2019. Impact of cage aquaculture on water exchange in Sansha Bay. Continent. Shelf Res. 188, 103963. https://doi.org/10.1016/j.csr.2019.103963.
    Liu, Z., Huguenard, K., 2020. Hydrodynamic response of a floating aquaculture farm in a low inflow estuary. J. Geophys. Res.: Oceans 125(2), e2019JC015625. https://doi.org/10.1029/2019JC015625.
    Montas, H.J., Reddy, G.V.S.P., Wheaton, F.W., 2000. CFD analysis of flow in aquaculture tanks. In: Proceedings of the 93rd Annual International Meeting of ASAE. ASAE, Washington DC, pp. 1-24.
    Navarrina, F., Colominas, I., Casteleiro, M., Cueto-Felgueroso, L., G omez, H., Fe, J., Soage, A., 2008. A numerical model for the transport of salinity in estuaries. Int. J. Numer. Methods Fluid. 56(5), 507-523. https://doi.org/10.1002/fld.1538.
    Newell, C.R., Richardson, J., 2014. The effects of ambient and aquaculture structure hydrodynamics on the food supply and demand of mussel rafts. J.Shellfish Res. 33(1), 257-272. https://doi.org/10.2983/035.033.0125.
    O'Donncha, F., Hartnett, M., Nash, S., 2013. Physical and numerical investigation of the hydrodynamic implications of aquaculture farms. Aquacult.Eng. 52, 14-26. https://doi.org/10.1016/j.aquaeng.2012.07.006.
    Panchang, V.G., Cheng, G., Newell, C.R., 1997. Modeling hydrodynamics and aquaculture waste transport in coastal Maine. Estuaries 20(1), 14-41.https://doi.org/10.2307/1352717.
    Pilditch, C.A., Grant, J., Bryan, K.R., 2001. Seston supply to sea scallops(Placopecten magellanicus) in suspended culture. Can. J. Fish. Aquat. Sci. 58(2), 241-253. https://doi.org/10.1139/cjfas-58-2-241.
    Plew, D.R., Stevens, C.L., Spigel, R.H., Hartstein, N.D., 2005. Hydrodynamic implications of large offshore mussel farms. IEEE J. Ocean. Eng. 30(1), 95-108. https://doi.org/10.1109/JOE.2004.841387.
    Plew, D.R., 2011. Depth-averaged drag coefficient for modeling flow through suspended canopies. J. Hydraul. Eng. 137(2), 234-247. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000300.
    Stevens, C.L., Plew, D.R., Smith, M.J., Fredriksson, D.W., 2007. Hydrodynamic forcing of long-line mussel farms: Observations. J. Waterw. Port, Coast. Ocean Eng. 133(3), 192-199. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(192).
    Tseung, H.L., Kikkert, G.A., Plew, D., 2016. Hydrodynamics of suspended canopies with limited length and width. Environ. Fluid Mech. 16, 145-166. https://doi.org/10.1007/s10652-015-9419-y.
    Venayagamoorthy, S.K., Ku, H.Y., Fringer, O.B., Chiu, A., Naylor, R.L., Koseff, J.R., 2011. Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ. Fluid Mech. 11, 329-352.https://doi.org/10.1007/s10652-011-9209-0.
    Wang, B., Cao, L., Micheli, F., Naylor, R.L., Fringer, O.B., 2018. The effects of intensive aquaculture on nutrient residence time and transport in a coastal embayment. Environ. Fluid Mech. 18, 1321-1349. https://doi.org/10.1007/s10652-018-9595-7.
    Wang, T.P., Tarang, K., Wen, L., Gary, G., 2014. Development of a kelp-type structure module in a coastal ocean model to assess the hydrodynamic impact of seawater uranium extraction technology. J. Mar. Sci. Eng. 2(1), 81-92. https://doi.org/10.3390/jmse2010081.
    Xu, T.J., Dong, G.H., 2018. Numerical simulation of the hydrodynamic behaviour of mussel farm in currents. J. Ships Offshore Struct. 13(8), 835-846. https://doi.org/10.1080/17445302.2018.1465380.
    Yang, H., Zhao, Y.P., Bi, C.W., Cui, Y., 2020. Numerical study on hydrodynamic responses of floating rope enclosure in waves and currents. J. Mar.Sci. Eng. 8(2), 82. https://doi.org/10.3390/jmse8020082.
    Zhang, H.X., Zhang, M.L., Ji, Y.P., Wang, Y.N., Xu, T.P., 2019. Numerical study of tsunami wave run-up and land inundation on coastal vegetated beaches.Comput. Geosci. 132, 9-22. https://doi.org/10.1016/j.cageo.2019.06.010.
    Zhang, M.L., Xu, H., 2021. Numerical analysis of the potential effect of wetlands on reducing tidal currents in the Liao River Estuary, China.Environ. Model. Assess. 26, 205-220. https://doi.org/10.1007/s10666-020-09729-3.
    Zhao, F., Huai, W.X., Li, D., 2017. Numerical modeling of open channel flow with suspended canopy. Adv. Water Resour. 105, 132-143. https://doi.org/10.1016/j.advwatres.2017.05.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (87) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return