Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Kobita Roy, Thuhin Kumar Dey, Mamun Jamal, Rajasekar Rathanasamy, Moganapriya Chinnasamy, Md. Elias Uddin. 2023: Fabrication of graphene oxide-keratin-chitosan nanocomposite as an adsorbent to remove turbidity from tannery wastewater. Water Science and Engineering, 16(2): 184-191. doi: 10.1016/j.wse.2022.12.003
Citation: Kobita Roy, Thuhin Kumar Dey, Mamun Jamal, Rajasekar Rathanasamy, Moganapriya Chinnasamy, Md. Elias Uddin. 2023: Fabrication of graphene oxide-keratin-chitosan nanocomposite as an adsorbent to remove turbidity from tannery wastewater. Water Science and Engineering, 16(2): 184-191. doi: 10.1016/j.wse.2022.12.003

Fabrication of graphene oxide-keratin-chitosan nanocomposite as an adsorbent to remove turbidity from tannery wastewater

doi: 10.1016/j.wse.2022.12.003
Funds:

This work was supported by the Fund of Research and Extension (R&E) of Khulna University of Engineering & Technology in Bangladesh (Grant No. KUET 11).

  • Received Date: 2022-06-20
  • Accepted Date: 2022-12-20
  • Rev Recd Date: 2022-11-24
  • Available Online: 2023-05-11
  • Excessive turbidity in water is aesthetically unappealing and severely malfunctions the photosynthesis process of aquatic ecosystems. This study aimed to evaluate the effectiveness of a nanocomposite adsorbent made of graphene oxide-keratin-chitosan for removing turbidity from tannery influent. The nanocomposite was fabricated with simple solution casting methods. Material dispersibility, bonding between composite materials (amide linkage), and the surface morphology of the nanocomposite were analyzed with the ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. At pH of 6, 2 g/L of adsorbent and a 25-min contact time resulted in about 88% of turbidity elimination. After the adsorption process, the total suspended solids, total dissolved solids, salinity, biochemical oxygen demand, and chemical oxygen demand of the tannery wastewater were reduced by 55%, 29%, 12%, 58%, and 75%, respectively. The optimum dosage of the nanocomposite with the maximum turbidity removal capacity was 12.62 mg/g. According the adsorption kinetic and isotherm models, the graphene oxide-keratin-chitosan nanocomposite played a key role in the turbidity removal process with chemisorption and electrostatic multilayer adsorption. This study provided methodological and mechanistic insights into the procedures of investigating the removal of turbidity from tannery wastewater with a novel composite material.

     

  • loading
  • Aboubaraka, A.E., Aboelfetoh, E.F., Ebeid, E.Z.M., 2017. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere 181, 738-746. https://doi.org/10.1016/j.chemosphere.2017.04.137.
    Ali, I., Basheer, A.A., Mbianda, X.Y., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., Grachev, V., 2019. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160-180. https://doi.org/10.1016/j.envint.2019.03.029.
    Aluigi, A., Vineis, C., Tonin, C., Tonetti, C., Varesano, A., Mazzuchetti, G., 2009. Wool keratin-based nanofibres for active filtration of air and water. J.Biobased Mater. Bioenergy 3(3), 311-319. https://doi.org/10.1166/jbmb.2009.1039.
    Amini Tapouk, F., Nabizadeh, R., Nasseri, S., Mesdaghinia, A., Khorsandi, H., Yousefi, M., Alimohammadi, M., Khoobi, M., 2020. Embedding of LArginine into graphene oxide (GO) for endotoxin removal from water:Modeling and optimization approach. Colloids Surf. A Physicochem. Eng.Asp. 607, 125491. https://doi.org/10.1016/j.colsurfa.2020.125491.
    Amosa, M.K., Jami, M.S., Alkhatib, M.A.F.R., Tajari, T., Jimat, D.N., Owolabi, R.U., 2016. Turbidity and suspended solids removal from highstrength wastewater using high surface area adsorbent:Mechanistic pathway and statistical analysis. Coagent Eng. 3(1), 1162384. https://doi.org/10.1080/23311916.2016.1162384.
    Angelucci, D.M., Stazi, V., Daugulis, A.J., Tomei, M.C., 2017. Treatment of synthetic tannery wastewater in a continuous two-phase partitioning bioreactor:Biodegradation of the organic fraction and chromium separation. J. Clean. Prod. 152, 321-329. https://doi.org/10.1016/j.jclepro.2017.03.135.
    Bai, R., Zhang, Y., Zhao, Z., Liao, Q., Chen, P., Zhao, P., Guo, W., Yang, F., Li, L., 2018. Rapid and highly selective removal of lead in simulated wastewater of rare-earth industry using diglycolamic-acid functionalized magnetic chitosan adsorbents. J. Ind. Eng. Chem. 59, 416-424. https://doi.org/10.1016/j.jiec.2017.10.053.
    Beigzadeh, P., Moeinpour, F., 2016. Fast and efficient removal of silver(I) from aqueous solutions using aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles. Trans. Nonferrous Metals Soc. China 26(8), 2238-2246. https://doi.org/10.1016/S1003-6326(16)64341-8.
    Catherine, H.N., Ou, M.H., Manu, B., Shih, Y.H., 2018. Adsorption mechanism of emerging and conventional phenolic compounds on graphene oxide nanoflakes in water. Sci. Total Environ. 635, 629-638. https://doi.org/10.1016/j.scitotenv.2018.03.389.
    Cheng, J., Shou, Q., Wu, J., Liu, F., Dravid, V.P., Zhang, X., 2013. Influence of component content on the capacitance of magnetite/reduced graphene oxide composite. J. Electroanal. Chem. 698, 1-8. https://doi.org/10.1016/j.jelechem.2013.03.017.
    de Araujo, C.M.B., do Nascimento, G.F.O., da Costa, G.R.B., da Silva, K.S., Baptisttella, A.M.S., Ghislandi, M.G., da Motta Sobrinho, M.A., 2019.Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method. Chem. Eng.Commun. 206(11), 1375-1387. https://doi.org/10.1080/00986445.2018.1534232.
    Desta, M.B., 2013. Batch sorption experiments:Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw(Eragrostis tef) agricultural waste. J. Thermodyn. 375830. https://doi.org/10.1155/2013/375830.
    Dhayal, V., Hashmi, S., Kumar, U., Choudhary, B., Kuznetsov, A., Dalela, S., Kumar, S., Kaya, S., Dolia, S., Alvi, P., 2020. Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55(30), 14829-14847. https://doi.org/10.1007/s10853-020-05093-5.
    El Rouby, W., Farghali, A.A., Sadek, M., Khalil, W.F., 2018. Fast removal of Sr(II) from water by graphene oxide and chitosan modified graphene oxide. J. Inorg. Organomet. Polym. Mater. 28(6), 2336-2349. https://doi.org/10.1007/s10904-018-0885-9.
    Fakhri, A., 2017. Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions:Kinetics, thermodynamics and mechanism studies. J. Saudi Chem. Soc. 21(S1), S52-S57.https://doi.org/10.1016/j.jscs.2013.10.002.
    Feng, C., Zhu, D., Wang, Y., Jin, S., 2020. Electromechanical behaviors of graphene reinforced polymer composites:A review. Materials 13(3), 528.https://doi.org/10.3390/ma13030528.
    Gaber, D., Abu Haija, M., Eskhan, A., Banat, F., 2017. Graphene as an efficient and reusable adsorbent compared to activated carbons for the removal of phenol from aqueous solutions. Water Air Soil Pollut. 228(9), 320. https://doi.org/10.1007/s11270-017-3499-x.
    Gaikwad, V., Munavalli, G., 2019. Turbidity removal by conventional and ballasted coagulation with natural coagulants. Appl. Water Sci. 9(5), 130.https://doi.org/10.1007/s13201-019-1009-6.
    Gong, X., Dang, G., Guo, J., Liu, Y., Gong, Y., 2020. A sodium alginate/feather keratin composite fiber with skin-core structure as the carrier for sustained drug release. Int. J. Biol. Macromol. 155, 386-392. https://doi.org/10.1016/j.ijbiomac.2020.03.224.
    Heidmann, I., Calmano, W., 2008. Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes. Separ. Purif. Technol. 61(1), 15-21. https://doi.org/10.1016/j.seppur.2007.09.011.
    Iwuozor, K.O., 2019. Prospects and challenges of using coagulationflocculation method in the treatment of effluents. Adv. J. Chem. Sec. A 2(2), 105-127. https://doi.org/10.29088/SAMI/AJCA.2019.2.105127.
    Kalantry, R.R., Jafari, J.A., Esrafili, A., Kakavandi, B., Gholizadeh, A., Azari, A., 2016. Optimization and evaluation of reactive dye adsorption on magnetic composite of activated carbon and iron oxide. Desalination Water Treat. 57(14), 6411-6422. https://doi.org/10.1080/19443994.2015.1011705.
    Kamarudin, A.N., Lai, K.S., Lamasudin, D.U., Idris, A.S., Balia Yusof, Z.N., 2017. Enhancement of thiamine biosynthesis in oil palm seedlings by colonization of endophytic fungus Hendersonia toruloidea. Front. Plant Sci. 8, 1799. https://doi.org/10.3389/fpls.2017.01799.
    Kausar, A., Sher, F., Hazafa, A., Javed, A., Sillanpää, M., Iqbal, M., 2020.Biocomposite of sodium-alginate with acidified clay for wastewater treatment:Kinetic, equilibrium and thermodynamic studies. Int. J. Biol. Macromol. 161, 1272-1285. https://doi.org/10.1016/j.ijbiomac.2020.05.266.
    Kumar, M.N.R., 2000. A review of chitin and chitosan applications. React. Funct.Polym. 46(1), 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9.
    Lai, Q., Zhu, S., Luo, X., Zou, M., Huang, S., 2012. Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146. https://doi.org/10.1063/1.4747817.
    Mahdavinia, G.R., Mosallanezhad, A., 2016. Facile and green rout to prepare magnetic and chitosan-crosslinked k-carrageenan bionanocomposites for removal of methylene blue. J. Water Proc. Eng. 10, 143-155. https://doi.org/10.1016/j.jwpe.2016.02.010.
    Mi, F.L., Tan, Y.C., Liang, H.F., Sung, H.W., 2002. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23(1), 181-191. https://doi.org/10.1016/S0142-9612(01)00094-1.
    Miralinaghi, P., Kashani, P., Moniri, E., Miralinaghi, M., 2019. Non-linear kinetic, equilibrium, and thermodynamic studies of 5-fluorouracil adsorption onto chitosanefunctionalized graphene oxide. Mater. Res.
    Express 6(6), 065305. https://doi.org/10.1088/2053-1591/ab0831.
    Omidinasab, M., Rahbar, N., Ahmadi, M., Kakavandi, B., Ghanbari, F., Kyzas, G.Z., Martinez, S.S., Jaafarzadeh, N., 2018. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles.Environ. Sci. Pollut. Control Ser. 25(34), 34262-34276. https://doi.org/10.1007/s11356-018-3137-1.
    Omidvar-Hosseini, F., Moeinpour, F., 2016. Removal of Pb(II) from aqueous solutions using Acacia Nilotica seed shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles. J. Water Reuse Desalin. 6(4), 562-573. https://doi.org/10.2166/wrd.2016.073.
    Roy, K., Dey, T., Zuha, S., Jamal, M., Srivastava, M., Uddin, M., 2022.Removal of turbidity from tannery wastewater using graphene oxide-ferric oxide nanocomposites as an adsorbent. Int. J. Environ. Sci. Technol.https://doi.org/10.1007/s13762-022-04301-w.
    Saha, S., Zubair, M., Khosa, M., Song, S., Ullah, A., 2019. Keratin and chitosan biosorbents for wastewater treatment:A review. J. Polym. Environ. 27(7), 1389-1403. https://doi.org/10.1007/s10924-019-01439-6.
    Smith, A.T., LaChance, A.M., Zeng, S., Liu, B., Sun, L., 2019. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1(1), 31-47. https://doi.org/10.1016/j.nanoms.2019.02.004.
    Solak, M., Kılıç, M., Hüseyin, Y., Şencan, A., 2009. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation:Comparison of electrode materials and electrode connection systems. J. Hazard. Mater. 172(1), 345-352. https://doi.org/10.1016/j.jhazmat.2009.07.018.
    Sun, C., Wang, Z., Chen, L., Li, F., 2020. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chem. Eng. J. 393, 124796.https://doi.org/10.1016/j.cej.2020.124796.
    Tanabe, T., Okitsu, N., Tachibana, A., Yamauchi, K., 2002. Preparation and characterization of keratinechitosan composite film. Biomaterials 23(3), 817-825. https://doi.org/10.1016/S0142-9612(01)00187-9.
    Uddin, M.E., Kim, N.H., Kuila, T., Lee, S.H., Hui, D., Lee, J.H., 2015.Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Compos. B Eng. 79, 649-659.https://doi.org/10.1016/j.compositesb.2015.05.029.
    Uddin, M.E., Layek, R.K., Kim, H.Y., Kim, N.H., Hui, D., Lee, J.H., 2016.Preparation and enhanced mechanical properties of non-covalentlyfunctionalized graphene oxide/cellulose acetate nanocomposites. Compos.B Eng. 90, 223-231. https://doi.org/10.1016/j.compositesb.2015.12.008.
    Wu, Z., Feng, W., Feng, Y., Liu, Q., Xu, X., Sekino, T., Fujii, A., Ozaki, M., 2007. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon 45(6), 1212-1218. https://doi.org/10.1016/j.carbon.2007.02.013.
    Yang, X., Chen, C., Li, J., Zhao, G., Ren, X., Wang, X., 2012. Graphene oxideiron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2(23), 8821-8826.https://doi.org/10.1039/C2RA20885G.
    Yousefi, M., Gholami, M., Oskoei, V., Mohammadi, A.A., Baziar, M., Esrafili, A., 2021. Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes:Process optimization using GA and RSM techniques. J. Environ. Chem. Eng. 9(4), 105677. https://doi.org/10.1016/j.jece.2021.105677.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (56) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return