Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Maria F. Carboni, Sonia Arriaga, Piet N. L. Lens. 2023: Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors. Water Science and Engineering, 16(2): 143-153. doi: 10.1016/j.wse.2022.12.004
Citation: Maria F. Carboni, Sonia Arriaga, Piet N. L. Lens. 2023: Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors. Water Science and Engineering, 16(2): 143-153. doi: 10.1016/j.wse.2022.12.004

Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors

doi: 10.1016/j.wse.2022.12.004
Funds:

Grant No. 15/RP/2763) and the Research Infrastructure Research Grant Platform for Biofuel Analysis (Grant No. 16/RI/3401).

This work was supported by the Science Foundation Ireland (SFI) through the SFI Research Professorship Programme entitled “Innovative Energy Technologies for Biofuels, Bioenergy and a Sustainable Irish Bioeconomy” (IETSBIO3

  • Received Date: 2022-06-27
  • Accepted Date: 2022-12-26
  • Rev Recd Date: 2022-11-14
  • Available Online: 2023-05-11
  • In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.

     

  • loading
  • Ashok, V., Hait, S., 2015. Remediation of nitrate-contaminated water by solidphase denitrification processea review. Environ. Sci. Pollut. Control Ser. 22(11), 8075-8093. https://doi.org/10.1007/s11356-015-4334-9.
    Beristain-Cardoso, R., Gómez, J., Méndez-Pampín, R., 2010. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor. Bioresour. Technol. 101(22), 8593. https://doi.org/10.1016/j.biortech.2010.06.084,8098.
    Bosch, J., Lee, K.Y., Jordan, G., Kim, K.W., Meckenstock, R.U., 2012.Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environ. Sci. Technol. 46(4), 2095. https://doi.org/10.1021/es2022329,2101.
    Carboni, M.F., Florentino, A.P., Costa, R.B., Zhan, X., Lens, P.N.L., 2021.Enrichment of autotrophic denitrifiers from anaerobic sludge using sulfurous electron donors. Front. Microbiol. 12, 678323. https://doi.org/10.3389/fmicb.2021.678323.
    Carboni, M.F., Mills, S., Arriaga, S., Collins, G., Ijaz, U.Z., Lens, P.N.L., 2022. Autotrophic denitrification of high-nitrate wastewater in fluidized bed reactor using pyrite and elemental sulfur as electron donors. Environ.Technol. Innovat. 28, 102878. https://doi.org/10.1016/j.eti.2022.102878.
    Cardoso, R.B., Sierra-Alvarez, R., Rowlette, P., Flores, E.R., Gómez, J., Field, J.A., 2006. Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95(6), 1148-1157. https://doi.org/10.1002/bit.21084.
    Chen, X., Guo, J., Xie, G., Liu, Y., Yuan, Z., Ni, B., 2015. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor:A model-based investigation of feasibility. Water Res. 85, 295-303. https://doi.org/10.1016/j.watres.2015.08.046.
    Chung, J., Amin, K., Kim, S., Yoon, S., Kwon, K., Bae, K., 2014. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.Water Res. 58, 169-178. https://doi.org/10.1016/j.watres.2014.03.071.
    Di Capua, F., Papirio, S., Lens, P.N.L., Esposito, G., 2015. Chemolithotrophic denitrification in biofilm reactors. Chem. Eng. J. 280, 643-657. https://doi.org/10.1016/j.cej.2015.05.131.
    Di Capua, F., Pirozzi, F., Lens, P.N.L., Esposito, G., 2019. Electron donors for autotrophic denitrification. Chem. Eng. J. 362, 922-937. https://doi.org/10.1016/j.cej.2019.01.069.
    Di Capua, F., Mascolo, M.C., Pirozzi, F., Esposito, G., 2020. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB). Chemosphere 255, 126977.https://doi.org/10.1016/j.chemosphere.2020.126977.
    Dolejs, P., Paclík, L., Maca, J., Pokorna, D., Zabranska, J., Bartacek, J., 2015.Effect of S/N ratio on sulfide removal by autotrophic denitrification. Appl.Microbiol. Biotechnol. 99(5), 2383-2392. https://doi.org/10.1007/s00253-014-6140-6.
    Drewnowski, J., Shourjeh, M.S., Kowal, P., Cel, W., 2021. Modelling AOBNOB competition in shortcut nitrification compared with conventional nitrificationedenitrification process. J. Phys. Conf. 1736(1), 012046.https://doi.org/10.1088/1742-6596/1736/1/012046.
    Dytczak, M.A., Londry, K.L., Oleszkiewicz, J.A., 2008. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 42(8-9), 2320-2328. https://doi.org/10.1016/j.watres.2007.12.018.
    Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W., 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor.Environ. Sci. Technol. 42(23), 8715-8720. https://doi.org/10.1021/es801391u.
    Evangelou, V.P., Zhang, Y.L., 1995. A review:Pyrite oxidation mechanisms and acid mine drainage prevention. Crit. Rev. Environ. Sci. Technol. 25(252), 37-41. https://doi.org/10.1080/10643389509388477.
    Ferreira, L.P., Müller, T.G., Cargnin, M., De Oliveira, C.M., Peterson, M., 2021.Valorization of waste from coal mining pyrite beneficiation. J. Environ.Chem. Eng. 9(4), 105759. https://doi.org/10.1016/j.jece.2021.105759.
    Florentino, A.P., Costa, R.B., Hu, Y., Flaherty, V.O., Lens, P.N.L., 2020. Long chain fatty acid degradation coupled to biological sulfidogenesis:A prospect for enhanced metal recovery. Front. Bioeng. Biotechnol. 8, 550253. https://doi.org/10.3389/fbioe.2020.550253.
    Guerrero, R.B.S., Zaiat, M., 2018. Wastewater post-treatment for simultaneous ammonium removal and elemental sulfur recovery using a novel horizontal mixed aerobic-anoxic fixed-bed reactor configuration. J. Environ. Manag. 215, 358-365. https://doi.org/10.1016/j.jenvman.2018.03.074.
    Gupta, R.K., Poddar, B.J., Nakhate, S.P., Chavan, A.R., Singh, A.K., Purohit, H.J., Khardenavi, A.A., 2021. Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process:A nonconventional nitrogen removal pathway in wastewater treatment. Lett. Appl. Microbiol. 74(2), 159-184. https://doi.org/10.1111/lam.13553.
    Hakanen, J., Miettinen, K., Sahlstedt, K., 2011. Wastewater treatment:New insight provided by interactive multiobjective optimization. Decis. Support Syst. 51(2), 328-337. https://doi.org/10.1016/j.dss.2010.11.026.
    Han, F., Zhang, M., Shang, H., Liu, Z., Zhou, W., 2020. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic limited nitrate wastewater. Bioresour. Technol. 315, 123826. https://doi.org/10.1016/j.biortech.2020.123826.
    Hao, R., Meng, G., Li, J., 2017. Impact of operating condition on the denitrifying bacterial community structure in a 3DBER-SAD reactor. J. Ind.Microbiol. Biotechnol. 44(1), 9-21. https://doi.org/10.1007/s10295-016-1853-4.
    Hoffmann, H., Da Costa, T.B., Wolff, D.B., Platzer, C., Da Costa, R.H.R., 2007.The potential of denitrification for the stabilization of activated sludge processes affected by low alkalinity problems. Braz. Arch. Biol. Technol. 50(2), 329-337. https://doi.org/10.1590/S1516-89132007000200018.
    Hwang, Y.W., Kim, C.G., Choo, I.J., 2005. Simultaneous nitrification/denitrification in a single reactor using ciliated columns packed with granular sulfur. Water Qual. Res. J. Can. 40(1), 91-96. https://doi.org/10.2166/wqrj.2005.008.
    Iannacone, F., Di Capua, F., Granata, F., Gargano, R., Pirozzi, F., Esposito, G., 2019. Effect of carbon-to-nitrogen ratio on simultaneous nitrification denitrification and phosphorus removal in a microaerobic moving bed biofilm reactor. J. Environ. Manag. 250, 109518. https://doi.org/10.1016/j.jenvman.2019.109518.
    Jiang, L., Chen, X., Qin, M., Cheng, S., Wang, Y., Zhou, W., 2019. On-board saline black water treatment by bioaugmentation original marine bacteria with Pseudoalteromonas sp. SCSE709-6 and the associated microbial community. Bioresour. Technol. 273, 496-505. https://doi.org/10.1016/j.biortech.2018.11.043.
    Jørgensen, C.J., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ. Sci. Technol. 43(13), 4851-4857. https://doi.org/10.1021/es803417s.
    Kadam, S.S., Mesbah, A., Van Der Windt, E., Kramer, H.J.M., 2010. Rapid online calibration for ATR-FTIR spectroscopy during batch crystallization of ammonium sulphate in a semi-industrial scale crystallizer. Chem.Eng. Res. Des. 89(7), 995-1005. https://doi.org/10.1016/j.cherd.2010.11.013.
    Kiefer, J., Srärk, A., Kiefer, A.L., Glade, H., 2018. Infrared spectroscopic analysis of the inorganic deposits from water in domestic and technical heat exchangers. Energies 11(4), 798. https://doi.org/10.3390/en11040798.
    Koenig, A., Zhang, T., Liu, L., Fang, H.H.P., 2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm. Chemosphere 58, 1041-1047. https://doi.org/10.1016/j.chemosphere.2004.09.040.
    Kostrytsia, A., Papirio, S., Frunzo, L., Mattei, M.R., Porca, E., Collins, G., Lens, P.N.L., Esposito, G., 2018. Elemental sulfur-based autotrophic denitrification and denitritation:Microbially catalyzed sulfur hydrolysis and nitrogen conversions. J. Environ. Manag. 211, 313-322. https://doi.org/10.1016/j.jenvman.2018.01.064.
    Lehner, S., Savage, K., Ciobanu, M., Cliffel, D.E., 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics:An electrochemical study of synthetic pyrite. Geochem. Cosmochim. Acta 71(10), 2491-2509. https://doi.org/10.1016/j.gca.2007.03.005.
    Li, H., Li, Y., Guo, J., Song, Y., Hou, Y., Lu, C., Han, Y., Shen, X., Liu, B., 2021. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms:Electron transfer and biofilm properties. Environ. Res. 194(3), 110708. https://doi.org/10.1016/j.envres.2021.110708.
    Li, Y., Guo, J., Li, H., Song, Y., Chen, Z., Lu, C., Han, Y., Hou, Y., 2020.Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresour. Technol. 296, 122340. https://doi.org/10.1016/j.biortech.2019.122340.
    Liu, T., He, X., Jia, G., Xu, J., Quan, X., You, S., 2020. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater. Chemosphere 247, 125831. https://doi.org/10.1016/j.chemosphere.2020.125831.
    Majzlan, J., Alpers, C.N., Bender, C., Mccleskey, R.B., Myneni, S.C.B., Neil, J.M., 2011. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem. Geol. 284(3-4), 296-305. https://doi.org/10.1016/j.chemgeo.2011.03.008.
    Mora, M., López, L.R., Lafuente, J., Pérez, J., Kleerebezem, R., van Loosdrecht, M.C.M., Gamisans, X., Gabriel, D., 2016. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Res. 89, 282-292. https://doi.org/10.1016/j.watres.2015.11.061.
    Park, J., Jin, H., Lim, B., Park, K., Lee, K., 2010. Bioresource technology ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 101(22), 8649-8657. https://doi.org/10.1016/j.biortech.2010.06.142.
    Pochana, K., Keller, J., 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 39(6), 61-68.https://doi.org/10.1016/S0273-1223(99)00123-7.
    Pu, J., Feng, C., Liu, Y., Li, R., Kong, Z., Chen, N., Tong, S., Hao, C., Liu, Y., 2015. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Bioresour. Technol. 173, 117-123. https://doi.org/10.1016/j.biortech.2014.09.092.
    Shao, M., Zhang, T., Fang, H.H.P., 2010. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications. Appl.Microbiol. Biotechnol. 88(5), 1027-1042. https://doi.org/10.1007/s00253-010-2847-1.
    Stams, A.J.M., Van Dijk, J.B., Dijkema, C., Plugge, C.M., 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59(4), 1114-1119.
    https://doi.org/10.1128/aem.59.4.1114-1119.1993.
    Tan, X., Yang, Y., Liu, Y., Li, X., Zhu, W., 2021. Quantitative ecology associations between heterotrophic nitrification-aerobic denitrification, nitrogen-metabolism genes, and key bacteria in a tidal flow constructed wetland. Bioresour. Technol. 377, 125549. https://doi.org/10.1016/j.biortech.2021.125449.
    Xia, Z., Wang, Q., Shea, Z., Gao, M., Zhao, Y., Guo, L., Jin, C., 2019. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 697, 134047. https://doi.org/10.1016/j.scitotenv.2019.134047.
    Yang, Y., Chen, T., Morrison, L., Gerrity, S., Collins, G., Porca, E., Li, R., Zhan, X., 2017. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents. Chem. Eng. J. 328, 511-518. https://doi.org/10.1016/j.cej.2017.07.061.
    Zhou, W., Li, Y., Liu, X., He, S., Huang, J.C., 2017. Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors.Appl. Microbiol. Biotechnol. 101, 447-453. https://doi.org/10.1007/s00253-016-7912-y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (102) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return