Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Leena V. Bora. 2023: Solar photocatalytic pathogenic disinfection: Fundamentals to state-of-the-art. Water Science and Engineering, 16(2): 132-142. doi: 10.1016/j.wse.2022.12.005
Citation: Leena V. Bora. 2023: Solar photocatalytic pathogenic disinfection: Fundamentals to state-of-the-art. Water Science and Engineering, 16(2): 132-142. doi: 10.1016/j.wse.2022.12.005

Solar photocatalytic pathogenic disinfection: Fundamentals to state-of-the-art

doi: 10.1016/j.wse.2022.12.005
  • Received Date: 2022-05-10
  • Accepted Date: 2022-12-26
  • Rev Recd Date: 2022-12-02
  • Available Online: 2023-05-11
  • It is necessary to treat pathogen-infected water before its utilisation. Of conventionally used treatment methods, solar photocatalysis has gained considerable momentum owing to its operational simplicity and capacity to use freely and abundantly available solar energy. This article systematically reviewed the disinfection of water with photocatalysis. It addressed the concerns of microbial infection of water and the fundamentals behind its treatment with photocatalysis. It presented an in-depth description of pathogenic deactivation with powerful reactive oxygen species. Special emphasis was given to process intensification as it is an attractive technique that provides multifunctionality and/or equipment miniaturisation. Solar reactor design regarding mobilised/immobilised photocatalysts and compound parabolic concentrators were elucidated. Finally, key parameters governing photoperformance, corresponding trade-offs, and the need for their optimisation were discussed. Overall, this article is a single point of reference for researchers, environmentalists, and industrialists who address the ever-severing challenge of providing clean water whilst also maintaining energy sustainability.

     

  • loading
  • Abeledo-Lameiro, M.J., Ares-Mazás, Elvira, Gómez-Couso, H., 2016. Evaluation of solar photocatalysis using TiO2 slurry in the inactivation of Cryptosporidium parvum oocysts in water. J. Photochem. Photobiol. B Biol. 163, 92-99. https://doi.org/10.1016/j.jphotobiol.2016.08.016.
    Adhikari, B.R., Thind, S.S., Chen, S., Schraft, H., Chen, A., 2018. Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. J. Hazard. Mater. 356, 73-81.https://doi.org/10.1016/j.jhazmat.2018.05.036.
    Aihemaiti, X., Wang, X., Li, Y., Wang, Y., Xiao, L., Ma, Y., Qi, K., Zhang, Y., Liu, J., Li, J., 2022. Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere 296, 134013. https://doi.org/10.1016/j.chemosphere.2022.134013.
    Baaloudj, O., Assadi, I., Nasrallah, N., Jery, A.E., Khezami, L., Assadi, A.A., 2021. Simultaneous removal of antibiotics and inactivation of antibioticresistant bacteria by photocatalysis:A review. J. Water Proc. Eng. 42, 102089. https://doi.org/10.1016/j.jwpe.2021.102089.
    Buck, C., Skillen, N., Robertson, P.K.J., Robertson, J.M.C., 2018. Influence of bacterial, environmental and physical factors in design of photocatalytic reactors for water disinfection. J. Photochem. Photobiol., A 366, 136-141.https://doi.org/10.1016/j.jphotochem.2018.04.030.
    Byrne, A., Fernandez-Ibañez, P., Dunlop, P.S.M., Dheaya, A.M.A., Hamilton, J.W.J., 2011. Photocatalytic enhancement for solar disinfection of water:A review. Int. J. Photoenergy 2011, 798051. https://doi.org/10.1155/2011/798051.
    Chaúque, B.J.M., Rott, M.B., 2021. Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply:Advances and challenges. Chemosphere 281, 130754. https://doi.org/10.1016/j.chemosphere.2021.130754.
    Chong, M.N., Jin, B., Zhu, H., Saint, C., 2010. Bacterial inactivation kinetics, regrowth and synergistic competition in a photocatalytic disinfection system using anatase titanate nanofiber catalyst. J. Photochem. Photobiol.Chem. 214, 1-9. https://doi.org/10.1016/j.jphotochem.2010.05.018.
    Deng, J., Liang, J., Li, M., Tong, M., 2017. Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr. Colloid. Surf. B Biointerfaces 152, 49-57. https://doi.org/10.1016/j.colsurfb.2017.01.003.
    Evgenidou, E., Chatzisalata, Z., Tsevis, A., Bourikas, K., Torounidou, P., Sergelidis, D., Koltsakidou, A., Lambropoulou, D.A., 2021. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts:Kinetics, mineralization, antimicrobial activity elimination and disinfection. J. Environ. Chem. Eng. 9(4), 105295. https://doi.org/10.1016/j.jece.2021.105295.
    Feng, K., Lin, Y., Guo, J., Ye, Z., Zhang, Y., Ma, Q., Shao, Y., Chen, K., Zhuang, J., Lin, D., et al., 2020a. Study on the enhanced electron-hole separation capability of IrxZn1-xO/Ti electrodes with high photoelectrocatalysis efficiency. J. Hazard. Mater. 393, 122488. https://doi.org/10.1016/j.jhazmat.2020.122488.
    Feng, L., Peillex-Delphe, C., Lü, C., Wang, D., Giannakis, S., Pulgarin, C., 2020b. Employing bacterial mutations for the elucidation of photo-Fenton disinfection:Focus on the intracellular and extracellular inactivation mechanisms induced by UVA and H2O2. Water Res. 182, 116049. https://doi.org/10.1016/j.watres.2020.116049.
    Feng, T., Liang, J., Ma, Z., Li, M., Tong, M., 2018. Bactericidal activity and mechanisms of BiOBr-AgBr under both darkand visible light irradiation conditions. Colloid. Surf. B Biointerf. 167, 275-283. https://doi.org/10.1016/j.colsurfb.2018.04.022.
    García-Fernández, I., Fernández-Calderero, I., Polo-López, M.I., FernándezIbáñez, P., 2015. Disinfection of urban effluents using solar TiO2 photocatalysis:A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal. Today 240, 30-38. https://doi.org/10.1016/j.cattod.2014.03.026.
    Gomes, J., Roccamante, M., Contreras, S., Medina, F., Oller, I., Martins, R.C., 2021. Scale-up impact over solar photocatalytic ozonation with benchmark-P25 and N-TiO2 for insecticides abatement in water. J. Environ. Chem. Eng. 9(1), 104915. https://doi.org/10.1016/j.jece.2020.104915.
    Goulhen-Chollet, F., Josset, S., Keller, N., Keller, V., Lett, M., 2009. Monitoring the bactericidal effect of UV-A photocatalysis:A first approach through 1D and 2D protein electrophoresis. Catal. Today 147, 169-172.https://doi.org/10.1016/j.cattod.2009.06.001.
    Gumy, D., Rincon, A.G., Hajdu, R., Pulgarin, C., 2006. Solar photocatalysis for detoxification and disinfection of water:Different types of suspended and fixed TiO2 catalysts study. Sol. Energy 80, 1376-1381. https://doi.org/10.1016/j.solener.2005.04.026.
    He, J., Kumar, A., Khan, M., Lo, L.M.C., 2021. Critical review of photocatalytic disinfection of bacteria:From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Sci. Total Environ. 758, 143953. https://doi.org/10.1016/j.scitotenv.2020.143953.
    Hu, X., Hu, X., Tang, C., Wen, S., Wu, X., Long, J., Yang, X., Wang, H., Lu, Z., 2017. Mechanisms underlying degradation pathways of microcystin-LR with doped TiO2 photocatalysis. Chem. Eng. J. 330(15), 355-371. https://doi.org/10.1016/j.cej.2017.07.161.
    Huang, K., Li, C., Zheng, Y., Wang, L., Wang, W., Meng, X., 2022. Recent advances on silver-based photocatalysis:Photocorrosion inhibition, visible-light responsivity enhancement, and charges separation acceleration. Separ. Purif. Technol. 283, 120194. https://doi.org/10.1016/j.seppur.2021.120194.
    Inamori, Y., Fujimoto, N., 2018. Microbial/biological contamination of water. In:Kobota, S., Tsuchiya, Y. (Eds.), Water Quality and Standards e Volume 2.EOLSS Publications, Paris.
    Jabbar, Z.H., Ebrahim, S.E., 2022. Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater:A comprehensive review. Environ. Nanotechnol.Monit. Manag. 17, 100666. https://doi.org/10.1016/j.enmm.2022.100666.
    Jaimy, K.B., Ghosh, S., Warrier, K.G., 2012. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions:Effect of crystal defects.J. Solid State Chem. 196, 465-470. https://doi.org/10.1016/j.jssc.2012.06. 048.
    Ju, L., Wu, P., Ju, Y., Chen, M., Yang, S., Zhu, H., 2021. The degradation mechanism of Bisphenol A by photoelectrocatalysis using new materials as the working electrode. Surface. Interfac. 23, 100967. https://doi.org/10.1016/j.surfin.2021.100967.
    Kubacka, A., Ferrer, M., Martínez-Arias, A., Fernández-García, M., 2008. Ag promotion of TiO2-anatase disinfection capability:Study of Escherichia coli inactivation. Appl. Catal. B Environ. 84(1-2), 87-93. https://doi.org/10.1016/j.apcatb.2008.02.020.
    Kumar, R., Raizada, P., Verma, N., Hosseini-Bandegharaei, A., Thakur, K.V., Le, Q.V., Nguyen, V., Selvasembian, R., Singh, P., 2021. Recent advances on water disinfection using bismuth based modified photocatalysts:Strategies and challenges. J. Clean. Prod. 297, 126617. https://doi.org/10.1016/j.jclepro.2021.126617.
    Liang, J., Deng, J., Liu, F., Li, M., Tong, M., 2018. Enhanced bacterial disinfection by Bi2MoO6-AgBr under visible light irradiation. Colloid.Surf. B Biointerf. 161, 528-536. https://doi.org/10.1016/j.colsurfb.2017.11.019.
    Liu, C., Kong, D., Hsu, P., Yuan, H., Lee, H., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., et al., 2016. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098-1104. https://doi.org/10.1038/nnano.2016.138.
    Liu, S., Zhao, M., He, Z., Zhong, Y., Ding, H., Chen, D., 2019. Preparation of a p-n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chin. J. Catal. 40(3), 446-457. https://doi.org/10.1016/S1872-2067(18)63186-9.
    Lydakis-Simantiris, N., Riga, D., Katsivela, E., Mantzavinos, D., Xekoukoulotakis, N.P., 2010. Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination 250, 351-355. https://doi.org/10.1016/j.desal.2009.09.055.
    Ma, S., Zhan, S., Jia, Y., Shi, Q., Zhou, Q., 2016. Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl. Catal. B Environ. 186, 77-87. https://doi.org/10.1016/j.apcatb.2015.12.051.
    Ma, S., Zhan, S., Xa, Y., Wang, P., Hou, Q., Zhou, Q., 2019. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/gC3N4 composite under visible light. Catal. Today 330, 179-188. https://doi.org/10.1016/j.cattod.2018.04.014.
    Maddigpu, P.R., Sawant, B., Wanjari, S., Goel, M.D., Vione, D., Dhodapkar, R.S., Rayalu, S., 2018. Carbon nanoparticles for solar disinfection of water. J. Hazard. Mater. 343, 157-165. https://doi.org/10.1016/j.jhazmat.2017.08.045.
    Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis:Recent overview and trends. Catal. Today 147, 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
    Manasa, M., Chandewar, P.R., Mahalingam, H., 2021. Photocatalytic degradation of ciprofloxacin & norfloxacin and disinfection studies under solar light using boron & cerium doped TiO2 catalysts synthesized by green EDTA-citrate method. Catal. Today 375, 522-536. https://doi.org/10.1016/j.cattod.2020.03.018.
    Matin, A.R., Yousefzadeh, S., Ahmadi, E., Mahvi, A., Alimohammadi, M., Aslani, H., Nabizadeh, R., 2018. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization. Food Chem. Toxicol. 116(B), 129-137. https://doi.org/10.1016/j.fct.2018.04.002.
    Matsunaga, S., 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29(1-2), 211-214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x.
    McEvoy, J.,G., Cui, W., Zhang, Z., 2013. Degradative and disinfective properties of carbon-doped anataseerutile TiO2 mixtures under visible light irradiation.Catal. Today 207, 191-199. https://doi.org/10.1016/j.cattod.2012.04.015.
    McEvoy, J.G., Zhang, Z., 2014. Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C Photochem. Rev. 19, 62-75. https://doi.org/10.1016/j.jphotochemrev.2014.01.001.
    McGuigan, K.G., Conroy, R.M., Mosler, H., du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibañez, P., 2012. Solar water disinfection (SODIS):A review from bench-top to roof-top. J. Hazard. Mater. 235(236), 29-46. https://doi.org/10.1016/j.jhazmat.2012.07.053.
    Mecha, A.G., Onyango, M.S., Ochieng, A., Momba, M.N.B., 2017. Evaluation of synergy and bacterial regrowth in photocatalytic ozonation disinfection of municipal wastewater. Sci. Total Environ. 626-635. https://doi.org/10.1016/j.scitotenv.2017.05.204, 601-602.
    Mehrjouei, M., Müller, S., Möller, D., 2015. A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209-219. https://doi.org/10.1016/j.cej.2014.10.112.
    Mendez-Hermida, F., Ares-Mazás, E., McGuigan, K.G., Boyle, M., Sichel, C., Fernández-Ibáñez, P., 2007. Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J. Photochem. Photobiol. B Biol. 88, 105-111. https://doi.org/10.1016/j.jphotobiol.2007.05.004.
    Meng, X., Zhang, Z., Li, X., 2015. Synergetic photoelectrocatalytic reactors for environmental remediation:A review. J. Photochem. Photobiol. C Photochem. Rev. 24, 83-101. https://doi.org/10.1016/j.jphotochemrev.2015.07.003.
    Montenegro-Ayo, R., Barrios, A.C., Mondal, I., Bhagat, K., MoralesGomero, J.C., Abbaszadegan, M., Westerhoff, P.K., Perreault, F., GarciaSegura, S., 2020. Portable point-of-use photoelectrocatalytic device provides rapid water disinfection. Sci. Total Environ. 737, 140044. https://doi.org/10.1016/j.scitotenv.2020.140044.
    Obuchi, E., Furusho, T., Katoh, K., Soejima, T., Nakano, K., 2019. Photocatalytic disinfection of sporulating Bacillus subtilis using silver-doped TiO2/SiO2. J. Water Proc. Eng. 30, 100511. https://doi.org/10.1016/j.jwpe.2017.10.011.
    Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. Gen. 25(1), 115-121. https://doi.org/10.1016/j.apcata.2004.01.007.
    Ouay, B.L., Stellacci, F., 2015. Antibacterial activity of silver nanoparticles:A surface science insight. Nano Today 10, 339-354. https://doi.org/10.1016/j.nantod.2015.04.002.
    Patil, S.B., Patil, S.B., Ganganagappa, N., Kakarla, R.R., Raghu, A.V., Venkata, C.R., 2020. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrogen Energ. 45(13), 7764-7778. https://doi.org/10.1016/j.ijhydene.2019.07.241.
    Pham, T., Lee, B., 2014. Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by AgeTiO2/GF under visible light. J.Colloid Interf. Sci. 428, 24-31. https://doi.org/10.1016/j.jcis.2014.04.030.
    Phan, D.D., Babick, F., Trinh, T.T.H., Nguyen, M.T.T., Samhaber, W., Stintz, M., 2018. Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes. Chem. Eng. Sci. 191, 332-342. https://doi.org/10.1016/j.ces.2018.06.062.
    Polo-López, M.I., Castro-Alf erez, M., Oller, I., Fernández-Ibáñez, P., 2014.Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chem. Eng. J. 257, 122-130. https://doi.org/10.1016/j.cej.2014.07.016.
    Ramasundaram, S., Seid, M.G., Kim, H., Son, A., Lee, C., Kim, E., Hong, S.W., 2018. Binder-free immobilization of TiO2 photocatalyst on steel mesh via electrospraying and hot-pressing and its application for organic micropollutant removal and disinfection. J. Hazard. Mater. 360, 62-70. https://doi.org/10.1016/j.jhazmat.2018.07.100.
    Ray, S.K., Dhakal, D., Regmi, C., Yamaguchui, T., Lee, W.S., 2018. Inactivation of Staphylococcus aureus in visible light by morphology tuned aNiMoO4. J. Photochem. Photobiol. Chem. 350, 59-68. https://doi.org/10.1016/j.jphotochem.2017.09.042.
    Regmi, C., Joshi, B., Ray, K.S., Gyawali, G., Pandey, P.R., 2016. Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front. Chem. 6, 33. https://doi.org/10.3389/fchem.2018.00033.
    Rincón, A., Pulgarin, C., 2006. Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl. Catal. B Environ. 63, 222-231. https://doi.org/10.1016/j.apcatb.2005.10.009.
    Rizzo, L., 2009. Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. J. Hazard. Mater. 165, 48-51. https://doi.org/10.1016/j.jhazmat.2008.09.068.
    Rizzo, L., Sannino, D., Vaiano, V., Sacco, O., Scarpa, A., Pietrogiacomi, D., 2014. Effect of solar simulated N-doped TiO2 photocatalysis on theinactivation and antibiotic resistance of an E. coli strain in biologicallytreated urban wastewater. Appl. Catal. B Environ. 144, 369-378.
    https://doi.org/10.1016/j.apcatb.2013.07.033.
    Rubio, D., Casanueva, J.F., Nebot, E., 2013. Improving UV seawater disinfection with immobilized TiO2:Study of the viability of photocatalysis(UV254/TiO2) as seawater disinfection technology. J. Photochem. Photobiol. Chem. 271, 16-23. https://doi.org/10.1016/j.jphotochem.2013.08.002.
    Sheydaei, M., Mohammad, K., Vatanpour, V., 2019. Continuous flow photoelectrocatalysis/reverse osmosis hybrid reactor for degradation of a pesticide using nano N-TiO2/Ag/Ti electrode under visible light. J. Photochem. Photobiol. Chem. 384, 112068. https://doi.org/10.1016/j.jphotochem.2019.112068.
    Shi, H., Wang, W., Zhang, L., Fan, J., 2021. Enhancement of photocatalytic disinfection performance of the Bi4O5Br2 with the modification of silver quantum dots. J. Environ. Chem. Eng. 9, 105867. https://doi.org/10.1016/j.jece.2021.105867.
    Shi, Y., Ma, J., Chen, Y., Qian, Y., Xu, B., Chu, W., An, D., 2022. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation:A review. Sci. Total Environ. 804, 150024. https://doi.org/10.1016/j.scitotenv.2021.150024.
    Sichel, C., de Cara, M., Tello, J., Blanco, J., Fernández-Ibáñez, P., 2007a. Solar photocatalytic disinfection of agricultural pathogenic fungi:Fusarium species. Appl. Catal. B Environ. 74, 152-160. https://doi.org/10.1016/j.apcatb.2007.02.005.
    Sichel, C., Tello, J., de Cara, M., Fernández-Ibáñez, P., 2007b. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 129, 152-160. https://doi.org/10.1016/j.cattod.2007.06.061.
    Teng, Z., Yang, N., Lv, H., Wang, S., Hu, M., Wang, C., Wang, D., Wang, G., 2019. Edge-functionalized g-C3N4 nanosheets as a highly efficient metalfree photocatalyst for safe drinking water. Chem 5(3), 664-680. https://doi.org/10.1016/j.chempr.2018.12.009.
    United Nations, 2020. The United Nations World Water Development Report 2020:Nature Based Solutions for Water. UNESCO, Paris.
    van Grieken, R., Marugán, J., Sordo, C., Pablos, C., 2009. Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixedbed reactors. Catal. Today 144(1-2), 48-54. https://doi.org/10.1016/j.cattod.2008.11.017.
    Wang, X., Wang, X., Zhao, J., Song, J., Su, C., Wang, Z., 2018. Adsorptionphotocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa. Chem. Eng. J. 341, 516-525. https://doi.org/10.1016/j.cej.2018.02.054.
    Waso, M., Khan, S., Singh, A., McMichael, S., Ahmed, W., Fernández-Ibáñez, P., Byrne, J.A., Khan, W., 2020. Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. Water Res. 169, 115281. https://doi.org/10.1016/j.watres.2019.115281.
    Wist, J., Sanabria, J., Dierolf, C., Torres, W., Pulgarin, C., 2002. Evaluation of photocatalytic disinfection of crude water for drinking-water production. J.Photochem. Photobiol. Chem. 147, 241-246. https://doi.org/10.1016/S1010-6030(01)00615-3.
    World Health Organization (WHO), 2018. Drinking Water. WHO, Geneva.http://www.who.int/news-room/fact-sheets/detail/drinking-water.
    Xu, Q., Zhang, L., Cheng, B., Fan, J., Yu, J., 2020. S-scheme heterojunction photocatalyst. Chem 6(7), 1543-1559. https://doi.org/10.1016/j.chempr.2020.06.010.
    Yang, H., Hao, H., Zhao, Y., Min, J., Zhang, G., Bi, J., Yan, S., Hou, H., 2022.An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity. Colloid. Surf. A Physicochem. Eng. Asp. 641, 128603. https://doi.org/10.1016/j.colsurfa.2022.128603.
    Ye, S., Chen, Y., Yao, X., Zhang, J., 2021. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis:A review. Chemosphere 273, 128503. https://doi.org/10.1016/j.chemosphere.2020.128503.
    Yu, C., Cai, D., Yang, K., Yu, J.C., Zhou, Y., Fan, C., 2021. Solegel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J. Phys. Chem. Solid. 71(9), 1337-1343. https://doi.org/10.1016/j.jpcs.2010.06.001.
    Yuan, Y., Guo, R., Hong, L., Ji, X., Lin, Z., Li, Z., Pan, W., 2021. A review of metal oxide-based Z-scheme heterojunction photocatalysts:Actualities and developments. Mater. Today Energy 21, 100829. https://doi.org/10.1016/j.mtener.2021.100829.
    Zeng, X., Wang, Z., Meng, N., McCarthy, D.T., Deletic, A., Pan, J., Zhang, X., 2017a. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide:Ternary nanocomposites for accelerated photocatalytic water disinfection. Appl. Catal. B Environ. 202, 33-41. https://doi.org/10.1016/j.apcatb.2016.09.014.
    Zeng, X., Wang, Z., Wang, G.G., Gengenbach, T.R., McCarthy, D.T., Deletic, A., Yu, J., Zhang, X., 2017b. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide:Z-Scheme photocatalysis system for accelerated photocatalytic water disinfection.Appl. Catal. B Environ. 218, 163-173. https://doi.org/10.1016/j.apcatb.2017.06.055.
    Zhang, C., Li, Y., Shuai, D., Shen, Y., Wang, D., 2019a. Progress and challenges in photocatalytic disinfection of waterborne viruses:A review to fill current knowledge gaps. Chem. Eng. J. 355, 399-415. https://doi.org/10.1016/j.cej.2018.08.158.
    Zhang, C., Zhang, M., Shuai, D., 2019b. Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygendoped graphitic carbon nitride and hydrothermal carbonation carbon.Appl. Catal. B Environ. 248, 11-21. https://doi.org/10.1016/j.apcatb.2019.02.009.
    Zhang, G., Jin, W., Xu, N., 2018. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 4(6), 848-860. https://doi.org/10.1016/j.eng.2017.05.001.
    Zhu, Z., Cai, H., Sun, D., 2018. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Tech. 75, 23-35. https://doi.org/10.1016/j.tifs.2018.02.018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (143) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return