Volume 16 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Wen-de Zhao, Li-ping Chen, Yan Jiao. 2023: Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Science and Engineering, 16(2): 192-202. doi: 10.1016/j.wse.2023.02.002
Citation: Wen-de Zhao, Li-ping Chen, Yan Jiao. 2023: Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption. Water Science and Engineering, 16(2): 192-202. doi: 10.1016/j.wse.2023.02.002

Preparation of activated carbon from sunflower straw through H3PO4 activation and its application for acid fuchsin dye adsorption

doi: 10.1016/j.wse.2023.02.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 41865010), the 2020 Leading Talents of Young Science and Technology Talents in Colleges and Universities of the Inner Mongolia Autonomous Region (Grant No. NJYT-20-A04), the Project of the 10th Group of Grassland Talents of the Inner Mongolia Autonomous Region, the 2022 Inner Mongolia Outstanding Youth Fund Project, and the Key Research and Development and Achievement Transformation Program of the Inner Mongolia Autonomous Region in 2022 (Grant No. 2022YFHH0035).

  • Received Date: 2021-12-24
  • Accepted Date: 2023-03-02
  • Rev Recd Date: 2023-02-18
  • Available Online: 2023-05-11
  • With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.

     

  • loading
  • Adamson, A.W., Gast, A.P., 1997. Physical Chemistry of Surfaces, Sixth Edition. Wiley-Interscience, New York.Ahmed, M.J., 2016. Application of agriculturally based activated carbons by microwave and conventional activations for basic dye adsorption:Review. J.Environ. Chem. Eng. 4(1), 89-99. https://doi.org/10.1016/j.jece.2015.10.027.
    Ahmed, M.J., 2017. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons:Review. Environ.Toxicol. Pharmacol. 50, 1-10. https://doi.org/10.1016/j.etap.2017.01.004.
    Ai, L., Li, M., Li, L., 2011. Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads:Kinetics, isotherms, and thermodynamics. J. Chem. Eng. Data 56(8), 3475-3483. https://doi.org/10.1021/je200536h.
    Akbarnejad, S., Amooey, A.A., Ghasemi, S., 2019. High effective adsorption of acid fuchsin dye using magnetic biodegradable polymer-based nanocomposite from aqueous solutions. Microchem. J. 149, 103966. https://doi.org/10.1016/j.microc.2019.103966.
    Anupam, K., Sikder, J., Pal, S., Halder, G., 2015. Optimizing the cross-flow nanofiltration process for chromium (VI) removal from simulated wastewater through response surface methodology. Environ. Prog. Sustain.Energy 34(5), 1332-1340. https://doi.org/10.1002/ep.12123.
    Anupam, K., Yadav, V., Karri, R.R., 2021. Chapter 5-entropy and MTOPSIS assisted central composite design for preparing activated carbon toward adsorptive defluoridation of wastewater. In:Dehghani, M.H., Karri, R., Lima, E. (Eds.), Green Technologies for the Defluoridation of Water.Elsevier, Amsterdam, pp. 119e140. https://doi.org/10.1016/B978-0-323-85768-0.00020-8.
    Baba, M., Schols, D., Pauwels, R., Balzarini, J., Clercq, E.D., 1998. Fuchsin acid selectively inhibits human immunodeficiency virus (HIV) replication in vitro. Biochem. Biophys. Res. Commun. 155(3), 1404-1411. https://doi.org/10.1016/S0006-291X(88)81297-X.
    Bastidas, J.M., Pinilla, P., Cano, E., Polo, J.L., Miguel, S., 2003. Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media. Corrosion Sci. 45(2), 427-449. https://doi.org/10.1016/S0010-938X(02)00123-3.
    Burke, V., Skinner, C.E., 1924. The reverse selective bacteriostatic action of acid fuchsin. J. Exp. Med. 39(4), 613-624. https://doi.org/10.1084/jem.39.4.613.
    Chen, B.L., Johnson, E.J., Chefetz, B., Zhu, L.Z., Xing, B.S., 2005. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility. Environ. Sci. Technol. 39(16), 6138-6146. https://doi.org/10.1021/es050622q.
    Chun, Y., Sheng, G.Y., Chiou, C.T., Xing, B.S., 2004. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 38(17), 4649-4655. https://doi.org/10.1021/es035034w.
    Cortes, L.N., Druzian, S.P., Streit, A.F.M., Cadaval, T.R.S., Collazzo, G.C., Dotto, G.L., 2019. Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption. Environ. Sci. Pollut.Res. 26(28), 28574-28583. https://doi.org/10.1007/s11356-018-3679-2.
    Delnavaz, M., Farahbakhsh, J., Mahdian, S.S., 2021. Photodegradation of reactive blue 19 dye using magnetic nanophotocatalyst a-Fe2O3/WO3:A comparison study of a-Fe2O3/WO3 and WO3/NaOH. Water Sci. Eng. 14(2), 119-128. https://doi.org/10.1016/j.wse.2021.06.007.
    Dutta, M., Basu, J.K., 2014. Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet. Int. J.Environ. Sci. Technol. 11(1), 87-96. https://doi.org/10.1007/s13762-013-0386-x.
    El-Bindary, A.A., Hussien, M.A., Diab, M.A., Eessa, A.M., 2014. Adsorption of acid yellow 99 by polyacrylonitrile/activated carbon composite:Kinetics, thermodynamics and isotherm studies. J. Mol. Liq. 197, 236-242. https://doi.org/10.1016/j.molliq.2014.05.003.
    Freundlich, H.M., 1906. Over the adsorption in solution. J. Phys. Chem. 57, 385-470.
    Ganesan, P., Kamaraj, R., Sozhan, G., Vasudevan, S., 2013a. Oxidized multiwalled carbon nanotubes as adsorbent for the removal of manganese from aqueous solution. Environ. Sci. Pollut. Control Ser. 20(2), 987-996.https://doi.org/10.1007/s11356-012-0928-7.
    Ganesan, P., Kamaraj, R., Vasudevan, S., 2013b. Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 44(5), 808-814. https://doi.org/10.1016/j.jtice.2013.01.029.
    Gao, Z., Yi, Y., Zhao, J., Xia, Y., Jiang, M., Cao, F., 2018. Co-immobilization of laccase and TEMPO onto amino-functionalized magnetic Fe3O4 nanoparticles and its application in acid fuchsin decolorization. Bioresour.Bioprocess. 5, 27. https://doi.org/10.1186/s40643-018-0215-7.
    Greer, L., Keane, S., Lin, C., Zhou, A., Yiliqi, Tong, T., 2015. The Textile Industry Leaps Forward with Clean by Design:Less Environmental Impact with Bigger Profits. Natural Resources Defense Council, New York.
    Ho, Y.S., 2006. Review of second-order models for adsorption systems. J. Hazard.Mater. 136(3), 681-689. https://doi.org/10.1016/j.jhazmat.2005.12.043.
    Hwang, H.R., Choi, W.J., Kim, T.J., Kim, J.S., Oh, K.J., 2008. The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent. Journal of Analyticval and Applied Pyrolysis 83(2), 220-226. https://doi.org/10.1016/j.jaap.2008.09.011.
    Kalkan, E., Nadaroglu, H., Celebi, N., Celik, H., Tasgin, E., 2015. Experimental study to remediate acid fuchsin dye using laccase-modified zeolite from aqueous solutions. Pol. J. Environ. Stud. 24(1), 115-124. https://doi.org/10.15244/pjoes/23797.
    Kamaraj, R., Davidson, D.J., Sozhan, G., Vasudevan, S., 2014. An in situ electrosynthesis of metal hydroxides and their application for adsorption of 4-chloro-2-methylphenoxyacetic acid (MCPA) from aqueous solution. J. Environ. Chem. Eng. 2(4),2068-2077. https://doi.org/10.1016/j.jece.2014.08.027.
    Kamaraj, R., Davidson, D.J., Sozhan, G., Vasudevan, S., 2015. Adsorption of herbicide 2-(2,4-dichlorophenoxy) propanoic acid by electrochemically generated aluminum hydroxides:An alternative to chemical dosing. RSC Adv. 5(50), 39799-39809. https://doi.org/10.1039/c5ra03339j.
    Kamaraj, R., Vasudevan, S., 2015. Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes. Powder Technol. 274, 268-275. https://doi.org/10.1016/j.powtec.2015.01.043.
    Kamaraj, R., Pandiarajan, A., Jayakiruba, S., Naushad, M., Vasudevan, S., 2016.
    Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide. J.Mol. Liq. 215, 204-211. https://doi.org/10.1016/j.molliq.2015.12.032.
    Kamaraj, R., Vasudevan, S., 2016. Facile one-pot electrosynthesis of Al(OH)3- kinetics and equilibrium modeling for adsorption of 2,4,5-trichlorophenoxyacetic acid from aqueous solution. New J. Chem. 40(3), 2249-2258. https://doi.org/10.1039/c5nj02407b.
    Kamaraj, R., Pandiarajan, A., Gandhi, M.R., Shibayama, A., Vasudevan, S., 2017. Eco-friendly and easily prepared graphenenanosheets for safe drinking water:Removal of chlorophenoxyacetic acid herbicides. ChemistrySelect 2(1), 342-355. https://doi.org/10.1002/slct.201601645.
    Kong, J., Huang, L., Yue, Q., Gao, B., 2014. Preparation of activated carbon derived from leather waste by H3PO4 activation and its application for basic fuchsin adsorption. Desalination Water Treat. 52(13-15), 2440-2449. https://doi.org/10.1080/19443994.2013.794713.
    Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl. 24(4), 1-39.
    Lakshmi, J., Vasudevan, S., 2013. GraphenedA promising material for removal of perchlorate (ClO 4) from water. Environ. Sci. Pollut. Res. 20(8), 5114-5124. https://doi.org/10.1007/s11356-013-1499-y.
    Langmuir, I., 1918. The adsorption of gases on plane surface of glasses. J. Am.Chem. Soc. 40, 1361-1403.
    Liu, S., Xu, W.H., Liu, Y.G., Tan, X.F., Zeng, G.M., Li, X., 2017. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Sci. Total Environ. 592, 546-553. https://doi.org/10.1016/j.scitotenv.2017.03.087.
    Liu, Y.Q., Maulidiany, N., Zeng, P., Heo, S., 2021. Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules:Acclimatization and long-term stability. Chemosphere 263, 128312. https://doi.org/10.1016/j.chemosphere.2020.128312.
    Ma, H., Feng, L., Kang, M., Yang, Z., Zhang, R., Li, H., 2020. Potential low-cost biosorbent modified from yard waste for acid-fuchsin removal. J. Environ. Eng. 146(8), 04020085. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001757.
    Mahmoodi, N.M., Arami, M., Bahrami, H., Khorramfar, S., 2010. Novel biosorbent (Canola hull):Surface characterization and dye removal ability at different cationic dye concentrations. Desalination 264(1-2), 134-142. https://doi.org/10.1016/j.desal.2010.07.017.
    Maroto-Valer, M.M., Andresen, J.M., Snape, C.E., 1998. Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77(7), 783-785. https://doi.org/10.1016/S0016-2361(97)00227-5.
    Myglovets, M., Poddubnaya, O.I., Sevastyanova, O., Lindstrom, M.E., Gawdzik, B., Sobiesiak, M., 2014. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80, 771-783. https://doi.org/10.1016/j.carbon.2014.09.032.
    Palodkar, A.V., Anupam, K., Banerjee, S., Halder, G., 2017. Insight into preparation of activated carbon towards defluoridation of waste water:Optimization, kinetics, equilibrium, and cost estimation. Environ. Prog.Sustain. Energy 36(6), 1597-1611. https://doi.org/10.1002/ep.12613.
    Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S., 2018. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water:Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresour.Technol. 261, 329-341. https://doi.org/10.1016/j.biortech.2018.04.005.
    Patidar, K., Vashishtha, M., 2020. Optimization of process variables to prepare mesoporous activated carbon from mustard straw for dye adsorption using response surface methodology. Water Air Soil Pollut. 231(10), 526. https://doi.org/10.1007/s11270-020-04893-4.
    Peiris, C., Gunatilake, S.R., Mlsna, T.E., Mohan, D., Vithanage, M., 2017.Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments:A critical review. Bioresour. Technol. 246, 150-159. https://doi.org/10.1016/j.biortech.2017.07.150.
    Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from waste water:Mechanisms, isotherms and kinetics. Water Res. 43(9), 2419-2430. https://doi.org/10.1016/j.watres.2009.02.039.
    Qiao, X.Q., Hu, F.C., Tian, F.Y., Hou, D.F., Li, D.S., 2016. Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6(14), 11631-11636. https://doi.org/10.1039/c5ra24328a.
    Radjenovic, J., Sedlak, D.L., 2015. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 49, 11292-11302. https://doi.org/10.1021/acs.est.5b02414.
    Rahnama, S., Shariati, S., Divsar, F., 2018. Synthesis of functionalized magnetite titanium dioxide nanocomposite for removal of acid fuchsine dye. Combinatorial Chemistry and High Throughput Screening 21(8), 583-593. https://doi.org/10.2174/1386207321666181019111211.
    Reffas, A., Bernardet, V., David, B., Reinert, L., Lehocine, M.B., Dubois, M., 2010. Carbons prepared from coffee grounds by H3PO4 activation:Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater. 175(1-3), 779-788. https://doi.org/10.1016/j.jhazmat.2009.10.076.
    Renita, A.A., Kumar, P.S., Jabasingh, S.A., 2019. Redemption of acid fuchsin dye from wastewater using de-oiled biomass:Kinetics and isotherm analysis. Bioresource Technology Reports 7, 100300. https://doi.org/10.1016/j.biteb.2019.100300.
    Sheng, Y., Zhen, L., Wang, X., Li, N., Tong, Q., 2010. Degradation of acid fuchsine by a modified electro-Fenton system with magnetic stirring as oxygen supplying. J. Environ. Sci. 22(4), 547-554. https://doi.org/10.1016/S1001-0742(09)60144-3.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., 1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603-619. https://doi.org/10.1351/pac198557040603.
    Song, M., Zhang, W., Chen, Y., Luo, J., Crittenden, J.C., 2017. The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams. Front. Chem. Sci. Eng. 11(3), 328-337. https://doi.org/10.1007/s11705-017-1646-y.
    Sun, X., Cheng, P., Wang, H., Xu, H., Dang, L., Liu, Z., 2015. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 92, 1-10. https://doi.org/10.1016/j.carbon.2015.02.052.
    Tabaraki, R., Sadeghinejad, N., 2017. Biosorption of six basic and acidic dyes on brown alga Sargassum ilicifolium:Optimization, kinetic and isotherm studies. Water Sci. Technol. 75(11), 2631-2638. https://doi.org/10.2166/wst.2017.136.
    Tan, I.A.W., Ahmad, A.L., Hameed, B.H., 2008. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk:Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 154(1-3), 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
    Temkin, M.J., Pyzhev, V., 1940. Recent modifications to Langmuir isotherms.Acta Physicochim. URSS 12, 217-225.
    Teng, H., Yeh, T.S., Hsu, L.Y., 1998. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36(9), 1387-1395. https://doi.org/10.1016/S0008-6223(98)00127-4.
    Vasudevan, S., Lakshmi, J., 2012a. The adsorption of phosphate by graphene from aqueous solution. RSC Adv. 2(12), 5234-5242. https://doi.org/10.1039/c2ra20270k.
    Vasudevan, S., Lakshmi, J., 2012b. Electrochemical removal of boron from water:Adsorption and thermodynamic studies. Can. J. Chem. Eng. 90(4), 1017-1026. https://doi.org/10.1002/cjce.20585.
    Vladov, D.C.H., Raicheva, L.P., Nikolov, R.N., Radoykova, T.H.R., Nenkova, S.K., 2019. Preparation of efficient carbonaceous material(active carbon) from hydrolysed lignin through direct activation with phosporic acid. Cell. Chem. Technol. 53(7-8), 731-738. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.71.
    Wang, B., Li, Y., Si, H., Chen, H., Zhang, M., Song, T., 2018. Analysis of the physical and chemical properties of activated carbons based on hulless barley straw and plain wheat straw obtained by H3PO4 activation. Bioresources 13(3), 5204-5212. https://doi.org/10.15376/BIORES.13.3.5204-5212.
    Wu, Z., Zhong, H., Yuan, X., Wang, H., Wang, L., Chen, X., 2014. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 67, 330-344. https://doi.org/10.1016/j.watres.2014.09.026.
    Yang, Q., Wu, P., Liu, J., Rehman, S., Ahmed, Z., Ruan, B., 2020. Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon:Adsorption rate and nature of mechanism. Environ. Res. 181, 108899. https://doi.org/10.1016/j.envres.2019.108899.
    Yang, S., Wu, Y., Wu, Y., Zhu, L., 2015. Optimizing decolorization of acid fuchsin and acid orange II solution by MnO2 loaded MCM-41. J. Taiwan Inst. Chem. E. 50, 205-214. https://doi.org/10.1016/j.jtice.2014.12.023.
    Yang, Z., Yang, Y., Zhu, X., Chen, G., Zhang, W., 2014. An outward coating route to CuO/MnO2 nanorod array films and their efficient catalytic oxidation of Acid Fuchsin dye. Ind. Eng. Chem. Res. 53(23), 9608-9615.https://doi.org/10.1021/ie500358p.
    Yin, X., Zhang, F., Zhang, W., 2015. Fabrication of hybrid magnetic Sr5Ba3(PO4)3(OH)/Fe3O4 nanorod and its highly efficient adsorption performance for acid fuchsin dye. Appl. Surf. Sci. 359, 714-722. https://doi.org/10.1016/j.apsusc.2015.10.162.
    Zeng, Z., Ye, S., Wu, H., Xiao, R., Zeng, G., Liang, J., 2019. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci. Total Environ. 648, 206-217. https://doi.org/10.1016/j.scitotenv.2018.08.108.
    Zhang, B., Wu, Y., Fang, P., 2019. Bamboo charcoal modified with Cu2+ and 3-aminopropyl trimethoxy silane for the adsorption of acid fuchsin dye:Optimization by response surface methodology and the adsorption mechanism. J. Appl. Polym. Sci. 136(27), 47728. https://doi.org/10.1002/app.47728.
    Zhang, C., Song, Z., Shi, H., Fu, J., Qiao, Y., He, C., 2017. The effects of pretreatments and low-temperature pyrolysis on surface properties of biochar from sunflower straw as adsorption material. Bioresources 12(1), 1041-1051. https://doi.org/10.15376/biores.12.1.1041-1051.
    Zhang, L., Zhou, X.Y., Guo, X.J., Song, X.Y., Liu, X.Y., 2011. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation. J. Mol. Catal. A-Chem. 335(1-2), 31-37. https://doi.org/10.1016/j.molcata.2010.11.007.
    Zhang, T., Xin, X., Liu, H., Song, N., Wang, Y., Shi, Y., 2020. Sol-gel preparation of spherical gamma-Al2O3 with macro-mesopores as an efficient adsorbent for acid fuchsin. Micro. Nano. Lett. 15(14), 1017-1022. https://doi.org/10.1049/mnl.2020.0271.
    Zhou, R., Zhou, R., Zhang, X., Bazaka, K., Ostrikov, K., 2019. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption. Front. Chem. Sci. Eng. 13(2), 340-349. https://doi.org/10.1007/s11705-019-1798-z.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (83) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return