Volume 16 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
Peter Olusakin Oladoye, Timothy Oladiran Ajiboye, Wycliffe Chisutia Wanyonyi, Elizabeth Oyinkansola Omotola, Mayowa Ezekiel Oladipo. 2023: Insights into remediation technology for malachite green wastewater treatment. Water Science and Engineering, 16(3): 261-270. doi: 10.1016/j.wse.2023.03.002
Citation: Peter Olusakin Oladoye, Timothy Oladiran Ajiboye, Wycliffe Chisutia Wanyonyi, Elizabeth Oyinkansola Omotola, Mayowa Ezekiel Oladipo. 2023: Insights into remediation technology for malachite green wastewater treatment. Water Science and Engineering, 16(3): 261-270. doi: 10.1016/j.wse.2023.03.002

Insights into remediation technology for malachite green wastewater treatment

doi: 10.1016/j.wse.2023.03.002
  • Received Date: 2022-10-02
  • Accepted Date: 2023-03-16
  • Rev Recd Date: 2023-03-06
  • Malachite green (MG) dye is a common industrial dye and organic contaminant that can be found in (waste)water. Textile and food industries make use of MG as dyeing and food coloring agents, respectively. However, MG is both genotoxic and mutagenic. Hence, the elimination of MG from MG-laden-wastewater is germane. This review summarizes up-to-date researches that have been reported in literature as regards the decontamination of toxic MG wastewater. Various removal methods (adsorption, membrane, Fenton system, and heterogenous and homogeneous photodegradation) were discussed. Of the two basic technologies that are comprehensively explored and reviewed, chemical treatment methods are not as viable as physical removal methods, such as the adsorption technology, due to the lack of secondary pollutant production, simple design, low operation costs, and resource availability. This review also presents various practical knowledge gaps needed for large-scale applications of adsorptive removal methods for MG. It concludes by recommending further research on the techniques of cheap and simple decontamination of MG to get clean water.

     

  • loading
  • Abdi, J., Vossoughi, M., Mahmoodi, N.M., Alemzadeh, I., 2017. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145-1158. https://doi.org/10.1016/j.cej.2017.06.054.
    Adebayo, M.A., Adebomi, J.I., Abe, T.O., Areo, F.I., 2020. Removal of aqueous Congo red and malachite green using ackee apple seedebentonite composite. Colloid Interf. Sci. Commun. 38, 100311. https://doi.org/10.1016/j.colcom.2020.100311.
    Ahmad, A.L., Harris, W., Syafiie, S., Seng, O., 2002. Removal of dye from wastewater of textile industry using membrane technology. Jurnal Teknologi 36, 31-44. https://doi.org/10.11113/jt.v36.581.
    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water:A review. Chemosphere 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071.
    Ajiboye, T.O., Kuvarega, A.T., Onwudiwe, D.C., 2020. Recent strategies for environmental remediation of organochlorine pesticides. Appl. Sci. 10(18), 6286. https://doi.org/10.3390/app10186286.
    Ajiboye, T.O., Oyewo, O.A., Onwudiwe, D.C., 2021a. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 29, 100277. https://doi.org/10.1016/j.flatc.2021.100277.
    Ajiboye, T.O., Oyewo, O.A., Onwudiwe, D.C., 2021b. Photocatalytic removal of parabens and halogenated products in wastewater:A review. Environ.Chem. Lett. 19(5), 3789-3819. https://doi.org/10.1007/s10311-021-01263-2.
    Ajiboye, T.O., Oyewo, O.A., Onwudiwe, D.C., 2021c. Simultaneous removal of organics and heavy metals from industrial wastewater:A review. Chemosphere 262, 128379. https://doi.org/10.1016/j.chemosphere.2020.128379.
    Allègre, C., Moulin, P., Maisseu, M., Charbit, F., 2006. Treatment and reuse of reactive dyeing effluents. J. Membr. Sci. 269(1), 15-34. https://doi.org/10.1016/j.memsci.2005.06.014.
    Amigun, A.T., Adekola, F.A., Tijani, J.O., Mustapha, S., 2022. Photocatalytic degradation of malachite green dye using nitrogen/sodium/iron-TiO2 nanocatalysts. Results in Chemistry 4, 100480. https://doi.org/10.1016/j.rechem.2022.100480.
    Amuda, O., Giwa, A., Bello, I., 2007. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng.J. 36(2), 174-181. https://doi.org/10.1016/j.bej.2007.02.013.
    Awokoya, K.N., Oninla, V.O., Adeyinka, G.C., Ajadi, M.O., Chidimma, O.T., Fakola, E.G., Akinyele, O.F., 2022. Experimental and computational studies of microwave-assisted watermelon rind e styrene based molecular imprinted polymer for the removal of malachite green from aqueous solution. Sci. Africa. 16, e01194. https://doi.org/10.1016/j.sciaf.2022.e01194.
    Baek, M.-H., Ijagbemi, C.O., Kim, D.-S., 2010a. Spectroscopic studies on the oxidative decomposition of Malachite Green using ozone. J. Env. Sci.Health A 45(5), 630-636. https://doi.org/10.1080/10934521003595779.
    Baek, M.-H., Ijagbemi, C.O., Se-Jin, O., Kim, D.-S., 2010b. Removal of Malachite Green from aqueous solution using degreased coffee bean. J.Hazard Mater. 176(1-3), 820-828. https://doi.org/10.1016/j.jhazmat.2009.11.110.
    Bai, C., Xiao, W., Feng, D., Xian, M., Guo, D., Ge, Z., Zhou, Y., 2013.Efficient decolorization of Malachite Green in the Fenton reaction catalyzed by[Fe(III)-salen]Cl complex. Chem. Eng. J. 215-216, 227-234.https://doi.org/10.1016/j.cej.2012.09.124.
    Bharati, B., Sonkar, A., Singh, N., Dash, D., Rath, C., 2017. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles. Mater. Res. Express 4(8). https://doi.org/10.1088/2053-1591/aa6a36,085503.
    Bilal, M., Ihsanullah, I., Shah, M.U.H., Reddy, A.V.B., Aminabhavi, T.M., 2022. Recent advances in the removal of dyes from wastewater using lowcost adsorbents. J. Environ. Manag. 321, 115981. https://doi.org/10.1016/j.jenvman.2022.115981.
    Buvaneswari, K., Singanan, M., 2022. Removal of malachite green dye in synthetic wastewater using zingiber officinale plant leaves biocarbon. Mater.Today Proc. 55, 274-279. https://doi.org/10.1016/j.matpr.2021.07.137.
    Chaplin-Kramer, R., Sharp, R.P., Weil, C., Bennett, E.M., Pascual, U., Arkema, K.K., Brauman, K.A., Bryant, B.P., Guerry, A.D., Haddad, N.M., 2019. Global modeling of nature's contributions to people. Science 366(6462), 255-258. https://doi.org/10.1126/science.aaw3372.
    Chen, C., Lu, C., Chung, Y., Jan, J., 2007. UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 141(3), 520-528. https://doi.org/10.1016/j.jhazmat.2006.07.011.
    Chen, F., Ma, W., He, J., Zhao, J., 2002. Fenton degradation of malachite green catalyzed by aromatic additives. J. Phys. Chem. 106(41), 9485-9490.https://doi.org/10.1021/jp0144350.
    Cheng, C., Liang, Q., Yan, M., Liu, Z., He, Q., Wu, T., Luo, S., Pan, Y., Zhao, C., Liu, Y., 2022. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts:A review. J. Hazard Mater. 424, 127721. https://doi.org/10.1016/j.jhazmat.2021.127721.
    Culp, S., Beland, F., Heflich, R., Benson, R., Blankenship, L., Webb, P., Mellick, P., Trotter, R., Shelton, S., Greenlees, K.J., et al., 2002. Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed leucomalachite green. Mutat. Res. Fund. Mol. Mech. Mutagen. 506(507), 55-63. https://doi.org/10.1016/S0027-5107(02)00152-5.
    Deokar, R., Sabale, A., 2014. Biosorption of methylene blue and malachite green from binary solution onto Ulva lactuca. Int. J. Curr. Microbiol. Appl.Sci. 3(5), 295-304.
    Dihom, H.R., Al-Shaibani, M.M., Mohamed, R.M.S.R., Al-Gheethi, A.A., Sharma, A., Khamidun, M.H.B., 2022. Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract:A critical review. J. Water Process Eng. 47, 102705. https://doi.org/10.1016/j.jwpe.2022.102705.
    Dutta, S., Gupta, B., Srivastava, S.K., Gupta, A.K., 2021. Recent advances on the removal of dyes from wastewater using various adsorbents:A critical review. Materials Advances 2(14), 4497-4531. https://doi.org/10.1039/D1MA00354B.
    El-Kady, A.A., Wade, T.L., Sweet, S.T., 2018. Assessment and ecological indicators of total and polycyclic aromatic hydrocarbons in the aquatic environment of lake Manzala, Egypt. J. Env. Sci. Health A. 53(9), 854-865. https://doi.org/10.1080/10934529.2018.1455376.
    García-Rodríguez, O., Ba~nuelos, J.A., El-Ghenymy, A., Godínez, L.A., Brillas, E., Rodríguez-Valadez, F.J., 2016. Use of a carbon felteiron oxide air-diffusion cathode for the mineralization of Malachite Green dye by heterogeneous electro-Fenton and UVA photoelectro-Fenton processes. J.Electroanal. Chem. 767, 40-48. https://doi.org/10.1016/j.jelechem.2016.01.035.
    Ghime, D., Goru, P., Ojha, S., Ghosh, P., 2019. Oxidative decolorization of a malachite green oxalate dye through the photochemical advanced oxidation processes. Global NEST Journal 21(2), 195-203. https://doi.org/10.30955/gnj.003000.
    Ghodbane, H., Hamdaoui, O., 2010. Decolorization of antraquinonic dye, C.I.Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem. Eng. J. 160(1), 226-231. https://doi.org/10.1016/j.cej.2010.03.049.
    Giang, N.T.H., Hai, N.D., Thinh, N.T., Tan, N.N., Phuong, L.P., Thinh, D.B., Van Duc, N., Viet, V.N.D., Duy, H.K., Phong, M.T., et al., 2022. Enhanced photocatalytic degradation of malachite green by sulfur-doped titanium dioxide/porous reduced graphene oxide. Diam. Relat. Mater. 129, 109321.https://doi.org/10.1016/j.diamond.2022.109321.
    Gündüz, F., Bayrak, B., 2017. Biosorption of malachite green from an aqueous solution using pomegranate peel:Equilibrium modelling, kinetic and thermodynamic studies. J. Mol. Liq. 243, 790-798. https://doi.org/10.1016/j.molliq.2017.08.095.
    Hameed, B.H., Lee, T.W., 2009. Degradation of malachite green in aqueous solution by Fenton process. J. Hazard. Mater. 164(2-3), 468-472. https://doi.org/10.1016/j.jhazmat.2008.08.018.
    Haounati, R., El Guerdaoui, A., Ouachtak, H., El Haouti, R., Bouddouch, A., Hafid, N., Bakiz, B., Santos, D., Taha, M.L., Jada, A., 2021. Design of direct Z-scheme superb magnetic nanocomposite photocatalyst Fe3O4/Ag3PO4@Sep for hazardous dye degradation. Separ. Purif. Technol. 277, 119399. https://doi.org/10.1016/j.seppur.2021.119399.
    Hashemian, S., 2013. Fenton-like oxidation of malachite green solutions:Kinetic and thermodynamic study. J. Chem. 2013, 809318. https://doi.org/10.1155/2013/809318.
    Ho, S., 2020. Removal of dyes from wastewater by adsorption onto activated carbon:Mini review. J. Geosci. Environ. Protect. 8(5), 100280. https://doi.org/10.4236/gep.2020.85008.
    Hubbs, A., Porter, D.W., Mercer, R., Castranova, V., Sargent, L., Sriram, K., 2013. Chapter 43-Nanoparticulates. In:Haschek, W.M., Rousseaux, C.G., Wallig, M.A. (Eds.), Haschek and Rousseaux's Handbook of Toxicologic Pathology, Third Edition. Academic Press, Pittsburgh, pp. 1373-1419.https://doi.org/10.1016/B978-0-12-415759-0.00043-1.
    Iqbal, A., Cevik, E., Bozkurt, A., Asiri, S.M.M., Alagha, O., Qahtan, T.F., Jalees, M.I., Farooq, M.U., 2022. Ultrahigh adsorption by regenerable iron-cobalt core-shell nanospheres and their synergetic effect on nanohybrid membranes for removal of malachite green dye. J. Environ. Chem.Eng. 10(3), 107968. https://doi.org/10.1016/j.jece.2022.107968.
    Jaffari, Z.H., Abbas, A., Lam, S.-M., Park, S., Chon, K., Kim, E.-S., Cho, K.H., 2022. Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. J. Hazard. Mater. 442, 130031. https://doi.org/10.1016/j.jhazmat.2022.130031.
    Jiang, D.B., Liu, X., Xu, X., Zhang, Y.X., 2018. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye. J. Phys. Chem. Solid. 112, 209-215. https://doi.org/10.1016/j.jpcs.2017.09.033.
    Karimi, A., Aghbolaghy, M., Khataee, A., Bargh, S., 2012. Use of enzymatic bio-Fenton as a new approach in decolorization of malachite green. Sci.World J. 2012, 1-6.
    Khan, J.A., He, X., Khan, H.M., Shah, N.S., Dionysiou, D.D., 2013. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV=S2O2-8=Fe2+ and UV=HSO5-=Fe2+ processes:A comparative study.Chemical Engineering Journal 218, 376-383. https://doi.org/10.1016/j.cej.2012.12.055.
    Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R., Bharagava, R.N., 2021. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ.Chem. Eng. 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012.
    Kumar, P., Agnihotri, R., Wasewar, K., Uslu, H., Yoo, C., 2012. Status of adsorptive removal of dye from textile industry effluent. Desalination Water Treat. 50, 226-244. https://doi.org/10.1080/19443994.2012.719472.
    Lee, Y.-C., Kim, E.J., Yang, J.-W., Shin, H.-J., 2011. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate. J. Hazard. Mater. 192(1), 62-70. https://doi.org/10.1016/j.jhazmat.2011.04.094.
    Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C., 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3(2), 275-290. https://doi.org/10.1016/j.biori.2019.09.001.
    Li, H.J., Xu, J.H., Wang, L.Q., Hou, D.D., Wang, Z.R., Li, H.Z., 2022.Adsorption properties of modified ATP-RGO composite aerogel for removal of malachite green and methyl orange from initary and binary aqueous solutions. Adsorpt. Sci. Technol. 2022, 5455330. https://doi.org/10.1155/2022/5455330.
    Marszałek, J., ZŻyłła, R., 2021. Recovery of water from textile dyeing using membrane filtration processes. Processes 9(10), 1833. https://doi.org/10.3390/pr9101833.
    Mazloom, F., Masjedi-Arani, M., Ghiyasiyan-Arani, M., Salavati-Niasari, M., 2016. Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46-53. https://doi.org/10.1016/j.molliq.2015.11.033.
    Mehmandost, N., Goudarzi, N., Chamjangali, M.A., Bagherian, G., 2022.Application of random forest for modeling batch and continuous fixed-bed removal of crystal violet from aqueous solutions using Gypsophila aretioides stem-based biosorbent. Spectrochim. Acta Mol. Biomol. Spectrosc. 265, 120292. https://doi.org/10.1016/j.saa.2021.120292.
    Modirshahla, N., Behnajady, M.A., 2006. Photooxidative degradation of Malachite Green (MG) by UV/H2O2:Influence of operational parameters and kinetic modeling. Dyes Pigments 70(1), 54-59. https://doi.org/10.1016/j.dyepig.2005.04.012.
    Mohamed Shameer, P., Mohamed Nishath, P., 2019. Chapter 8-Exploration and enhancement onfuelstabilityofbiodiesel:Astepforwardinthe trackofglobal commercialization. In:Azad, A.K., Rasul, M. (Eds.), Woodhead Publishing Series in Energy, Advanced Biofuels. Woodhead Publishing, Sawston, pp. 181-213. https://doi.org/10.1016/B978-0-08-102791-2.00008-8.
    Moradi, O., Panahandeh, S., 2022. Fabrication of different adsorbents based on zirconium oxide, graphene oxide, and dextrin for removal of green malachite dye from aqueous solutions. Environ. Res. 214, 114042. https://doi.org/10.1016/j.envres.2022.114042.
    Naushad, M., Alqadami, A.A., Al-Kahtani, A.A., Ahamad, T., Awual, M.R., Tatarchuk, T., 2019. Adsorption of textile dye using para-aminobenzoic acid modified activated carbon:Kinetic and equilibrium studies. J. Mol.Liq. 296, 112075. https://doi.org/10.1016/j.molliq.2019.112075.
    Navarro, P., Zapata, J.P., Gotor, G., Gonzalez-Olmos, R., Gómez-López, V.M., 2019. Degradation of malachite green by a pulsed light/H2O2 process.Water Sci. Technol. 79(2), 260-269. https://doi.org/10.2166/wst.2019.041. Ojediran, J.O., Dada, A.O., Aniyi, S.O., David, R.O., Adewumi, A.D., 2021.
    Mechanism and isotherm modeling of effective adsorption of malachitegreen as endocrine disruptive dye using Acid Functionalized Maize Cob (AFMC).Sci. Rep. 11(1), 21498. https://doi.org/10.1038/s41598-021-00993-1.
    Oladoye, P.O., 2022. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste) water:A state-of-the-art review. Chemosphere 287, 132130. https://doi.org/10.1016/j.chemosphere.2021.132130.
    Oladoye, P.O., Bamigboye, O.M., Ogunbiyi, O.D., Akano, M.T., 2022.Toxicity and decontamination strategies of Congo red dye. Groundwater Sustain. Dev. 19, 100844. https://doi.org/10.1016/j.gsd.2022.100844.
    Oplatowska, M., Donnelly, R.F., Majithiya, R.J., Kennedy, D.G., Elliott, C.T., 2011. The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food Chem. Toxicol. 49(8), 1870-1876. https://doi.org/10.1016/j.fct.2011.05.005.
    Oturan, M.A., Guivarch, E., Oturan, N., Sirés, I., 2008. Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl. Catal. B Environ. 82(3-4), 244-254. https://doi.org/10.1016/j.apcatb.2008.01.016.
    Pandey, D., Daverey, A., Dutta, K., Arunachalam, K., 2022. Bioremoval of toxic malachite green from water through simultaneous decolorization and degradation using laccase immobilized biochar. Chemosphere 297, 134126. https://doi.org/10.1016/j.chemosphere.2022.134126.
    Patel, M., Surti, M., Siddiqui, A.J., Adnan, M., 2021. Chapter 27-Fungi and metal nanoparticles. In:Kharisov, B., Kharissova, O. (Eds.), Handbook of Greener Synthesis of Nanomaterials and Compounds. Elsevier, Amsterdam, pp. 861-890. https://doi.org/10.1016/B978-0-12-821938-6.00027-X.
    Pathy, A., Krishnamoorthy, N., Chang, S.X., Paramasivan, B., 2022. Malachite green removal using algal biochar and its composites with kombucha SCOBY:An integrated biosorption and phycoremediation approach. Surface. Interfac. 30, 101880. https://doi.org/10.1016/j.surfin.2022.101880.
    Peighambardoust, S.J., Aghamohammadi-Bavil, O., Foroutan, R., Arsalani, N., 2020. Removal of malachite green using carboxymethyl cellulose-gpolyacrylamide/montmorillonite nanocomposite hydrogel. Int. J. Biol. Macromol. 159, 1122-1131. https://doi.org/10.1016/j.ijbiomac.2020.05.093.
    Ramaraju, B., Manoj Kumar Reddy, P., Subrahmanyam, C., 2014. Low cost adsorbents from agricultural waste for removal of dyes. Environ. Prog.Sustain. Energy 33(1), 38-46. https://doi.org/10.1002/ep.11742.
    Raval, A.R., Kohli, H.P., Mahadwad, O.K., 2022. Application of emulsion liquid membrane for removal of malachite green dye from aqueous solution:Extraction and stability studies. Chem. Eng. J. Adv. 12, 100398.https://doi.org/10.1016/j.ceja.2022.100398.
    Samuchiwal, S., Gola, D., Malik, A., 2021. Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. J.Hazard. Mater. 402, 123835. https://doi.org/10.1016/j.jhazmat.2020.123835.
    Sasmal, D., Banerjee, S., Senapati, S., Tripathy, T., 2020. Effective removal of Th4+, Pb2+, Cd2+, malachite green, methyl violet and methylene blue from their aqueous solution by amylopectin dialdehyde-Schiff base. J. Environ.Chem. Eng. 8(3), 103741. https://doi.org/10.1016/j.jece.2020.103741.
    Scott, K., Hughes, R., Hughes, R., 1996. Industrial Membrane Separation Technology. Springer, Berlin.Seliem, M.K., Barczak, M., Anastopoulos, I., Giannakoudakis, D.A., 2020. A novel nanocomposite of activated serpentine mineral decorated with magnetic nanoparticles for rapid and effective adsorption of hazardous cationic dyes:Kinetics and equilibrium studies. Nanomaterials 10(4), 684.https://doi.org/10.3390/nano10040684.
    Sghaier, I., Guembri, M., Chouchane, H., Mosbah, A., Ouzari, H.I., Jaouani, A., Cherif, A., Neifar, M., 2019. Recent advances in textile wastewater treatment using microbial consortia. J. Text. Eng. Fash.Technol. 5(3), 134-146. https://doi.org/10.15406/jteft.2019.05.00194.
    Sharma, N., Nandi, B.K., 2013. Utilization of sugarcane baggase, an agricultural waste to remove malachite green dye from aqueous solutions. J.Mater. Environ. Sci. 4(6), 1052-1065.
    Shi, Z., Xu, C., Guan, H., Li, L., Fan, L., Wang, Y., Liu, L., Meng, Q., Zhang, R., 2018. Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp. 539, 382-390. https://doi.org/10.1016/j.colsurfa.2017.12.043.
    Shrivastava,V., Ali, I., Marjub, M.M., Rene, E.R., Soto,A.M.F.,2022. Wastewater in the food industry:Treatment technologies and reuse potential. Chemosphere 293, 133553. https://doi.org/10.1016/j.chemosphere.2022.133553.
    Singh, P., Raizada, P., Kumari, S., Kumar, A., Pathania, D., Thakur, P., 2014.Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite. Appl. Catal. Gen. 476, 9-18. https://doi.org/10.1016/j.apcata.2014.02.009.
    Sleeman, R., Carter, J.F., 2005. Forensic sciences|Explosives. In:Worsfold, P., Townshend, P., Poole, C. (Eds.), Encyclopedia of Analytical Science, Second Edition. Elsevier, Amsterdam, pp. 400-406. https://doi.org/10.1016/B0-12-369397-7/00198-9.
    Song, J., Han, G., Wang, Y., Jiang, X., Zhao, D., Li, M., Yang, Z., Ma, Q., Parales, R.E., Ruan, Z., 2020. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii. Sci. Rep. 10, 4502. https://doi.org/10.1038/s41598-020-61442-z.
    Srivastava, S., Sinha, R., Roy, D., 2004. Toxicological effects of malachite green. Aquat. Toxicol. 66(3), 319-329. https://doi.org/10.1016/j.aquatox.2003.09.008.
    Tran, T.V., Nguyen, D.T.C., Kumar, P.S., Din, A.T.M., Qazaq, A.S., Vo, D.V.N., 2022. Green synthesis of Mn3O4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye.Environ. Res. 214, 113925. https://doi.org/10.1016/j.envres.2022.113925.
    Tsai, C.-Y., Lin, P.-Y., Hsieh, S.-L., Kirankumar, R., Patel, A.K., Singhania, R.-R., Dong, C.-D., Chen, C.-W., Hsieh, S., 2022. Engineered mesoporous biochar derived from rice husk for efficient removal of malachite green from wastewaters. Bioresour. Technol. 347, 126749. https://doi.org/10.1016/j.biortech.2022.126749.
    World Health Organization (WHO), 2017. Progress on Drinking Water, Sanitation and Hygiene:2017 Update and SDG Baselines. WHO, Geneva.Wu, J., Yang, J., Feng, P., Wen, L., Huang, G., Xu, C., Lin, B., 2022. Highly efficient and ultra-rapid adsorption of malachite green by recyclable crab shell biochar. J. Ind. Eng. Chem. 113, 206-214. https://doi.org/10.1016/j.jiec.2022.05.047.
    Young, S.L., Boateng, G.O., Jamaluddine, Z., Miller, J.D., Frongillo, E.A., Neilands, T.B., Collins, S.M., Wutich, A., Jepson, W.E., Stoler, J., 2019.The Household Water InSecurity Experiences (HWISE) Scale:Development and validation of a household water insecurity measure for lowincome and middle-income countries. BMJ Global Health 4(5), e001750.https://doi.org/10.1136/bmjgh-2019-001750.
    Yu, M., Han, Y., Li, J., Wang, L., 2017. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 317, 493-502. https://doi.org/10.1016/j.cej.2017.02.105.
    Zhang, P., Hou, D., O'Connor, D., Li, X., Pehkonen, S., Varma, R.S., Wang, X., 2018. Green and size-specific synthesis of stable FeeCu oxides as earthabundant adsorbents for Malachite green removal. ACS Sustain. Chem.Eng. 6(7), 9229-9236. https://doi.org/10.1021/acssuschemeng.8b0154.7.
    Zhao, J., Liu, X., 2022. Electron microscopic methods (TEM, SEM and energy dispersal spectroscopy). In:Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-822974-3.00013-6.
    Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., Ouyang, W., 2019. Persulfate-based advanced oxidation processes (AOPs) for organiccontaminated soil remediation:A review. Chem. Eng. J. 372, 836-851.https://doi.org/10.1016/j.cej.2019.04.213.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (55) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return