Volume 16 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
Rui-hua Nie, Qi-hang Zhou, Wen-jie Li, Xing-nian Liu, Gang Xie, Lu Wang. 2023: Impact of backwater on water surface profile in curved channels. Water Science and Engineering, 16(3): 295-301. doi: 10.1016/j.wse.2023.04.006
Citation: Rui-hua Nie, Qi-hang Zhou, Wen-jie Li, Xing-nian Liu, Gang Xie, Lu Wang. 2023: Impact of backwater on water surface profile in curved channels. Water Science and Engineering, 16(3): 295-301. doi: 10.1016/j.wse.2023.04.006

Impact of backwater on water surface profile in curved channels

doi: 10.1016/j.wse.2023.04.006
Funds:

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFC1510701) and the National Natural Science Foundation of China (Grant No. U20A20319).

  • Received Date: 2022-08-20
  • Accepted Date: 2023-04-29
  • Rev Recd Date: 2023-04-22
  • Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter x when -0.2 <ξ<0.5, and decreased with x when 0.5 <ξ<1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.

     

  • loading
  • Akhtari, A.A., Abrishami, J., Sharifi, M.B., 2009. Experimental investigations water surface characteristics in strongly-curved open channels. J. Appl.Sci. 9(20), 3699-3706. https://doi.org/10.3923/jas.2009.3699.3706.
    Bahrami Yarahmadi, M., Shafai Bejestan, M., Pagliara, S., 2020. An experimental study on the secondary flows and bed shear stress at a 90-degree mild bend with and without triangular vanes. J. Hydro-environ. Res. 33, 1-9. https://doi.org/10.1016/j.jher.2020.10.001.
    Blanckaert, K., De Vriend, H., 2004. Secondary flow in sharp one-channel bends. J. Fluid Mech. 498, 353-380. https://doi.org/10.1017/S0022112003006979.
    Blanckaert, K., 2010. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour.Res. 46, W09506. https://doi.org/10.1029/2009WR008303.
    Di Cristo, C., Iervolino, M., Vacca, A., 2015. Diffusive approximation for unsteady mud flows with backwater effect. Adv. Water Resour. 81, 84-94.https://doi.org/10.1016/j.advwatres.2014.10.002.
    Dietrich, W., Smith, J., Dunne, T., 1979. Flow and sediment transport in a sand bedded meander. J. Geol. 87(3), 305-315. https://doi.org/10.1086/628419.
    Gholami, A., Akhtari, A.A., Minatour, Y., Bonakdari, H., Javadi, A.A., 2014.Experimental and numerical study on velocity fields and water surface profile in a strongly-curved 90° open channel bend. Eng. Appl. Comp.Fluid. 8(3), 447-461. https://doi.org/10.1080/19942060.2014. 11015528.
    Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., et al., 2019. Mapping the world's free-flowing rivers. Nature 569(7755), 215-221. https://doi.org/10.1038/s41586-019-1111-9.
    Hu, C., Yu, M., Wei, H., Liu, C., 2019. The mechanisms of energy transformation in sharp open-channel bends:Analysis based on experiments in a laboratory flume. J. Hydrol. 571, 723-739. https://doi.org/10.1016/j.jhydrol.2019.01.074.
    Jin, Z.W., Lu, J.Y., Wu, H.L., 2016. Study of bedload transport in backwater flow. J. Hydrodyn. Ser. B. 28(1), 153-161. https://doi.org/10.1016/S1001-6058(16)60616-9.
    Kashyap, S., Constantinescu, G., Rennie, C.D., Post, G., Townsend, R., 2012.Influence of channel aspect ratio and curvature on flow, secondary circulation, and bed shear stress in a rectangular channel bend. J. Hydraul. Eng. 138(12), 1045-1059. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000643.
    Lehner, B., Reidy Liermann, C., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Doell, P., Endejan, M., Frenken, K., Magome, J., et al., 2011.High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9(9), 494-502. https://doi.org/10.1890/100125.
    Leschziner, M., Rodi, W., 1979. Calculation of strongly curved open-channel flow. J. Hydraul. Div. 105, 1297-1314. https://doi.org/10.1016/0003-9861(68)90371-8.
    Li, B.D., Zhang, X.H., Tang, H.S., Tsubaki, R., 2018. Influence of deflection angles on flow behaviours in openchannel bends. J. Mt. Sci. 15(10), 2292-2306. https://doi.org/10.1007/s11629-018-4848-y.
    Liro, M., Ruiz-Villanueva, V., Mikuś, P., Wyzga, B., Bladé Castellet, E., 2020.Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total Environ. 744, 140555. https://doi.org/10.1016/j.scitotenv.2020.140555.
    Maselli, V., Pellegrini, C., Del Bianco, F., Mercorella, A., Nones, M., Crose, L., Guerrero, M., Nittrouer, J., 2018. River morphodynamic evolution under dam-induced backwater:An example from the Po River(Italy). J. Sediment. Res. 88, 1190-1204. https://doi.org/10.2110/jsr.2018.61.
    Munier, S., Litrico, X., Belaud, G., Malaterre, P.O., 2008. Distributed approximation of open-channel flow routing accounting for backwater effects. Adv. Water Resour. 31(12), 1590-1602. https://doi.org/10.1016/j.advwatres.2008.07.007.
    Rozovskii, I.L., 1961. Flow of Water in Bends of Open Channels. Israel Program for Scientific Translations, Jerusalem.Russell, P., Vennell, R., 2019. High resolution observations of an outer-bank cell of secondary circulation in a natural river bend. J. Hydraul. Eng. 145(5), 4019012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001584.
    Rüther, N., Olsen, N.R.B., 2005. Three-dimensional modeling of sediment transport in a narrow 90° channel bend. J. Hydraul. Eng. 131(10), 917-920. https://doi.org/10.1061/(ASCE)0733-9429 (2005)131:10(917).
    Tang, X., Knight, D.W., 2009. Analytical models for velocity distributions in open channel flows. J. Hydraul. Res. 47(4), 418-428. https://doi.org/10.1080/00221686.2009.9522017.
    Tang, X., Knight, D.W., 2015. The lateral distribution of depth-averaged velocity in a channel flow bend. J. Hydro-environ. Res. 9(4), 532-541.https://doi.org/10.1016/j.jher.2014.11.004.
    Vaghefi, M., Akbari, M., Fiouz, A.R., 2015. An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend:Secondary flow and bed shear stress. KSCE J. Civ. Eng. 20(4), 1582-1593. https://doi.org/10.1007/s12205-015-1560-0.
    van Balen, W., Blanckaert, K., Uijttewaal, W.S.J., 2010. Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS. J. Turbul. 11(12), 1-34. https://doi.org/10.1080/14685241003789404.
    Zeng, J., Constantinescu, G., Blanckaert, K., Weber, L., 2008. Flow and bathymetry in sharp open-channel bends:Experiments and predictions.Water Resour. Res. 44, W09401. https://doi.org/10.1029/2007WR006303.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (64) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return