Volume 16 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
Ran Gong, Hui-ya Wang, Zhi-xin Hu, Yi-ping Li. 2023: Simulation of internal nitrogen release from bottom sediments in an urban lake using a nitrog. Water Science and Engineering, 16(3): 252-260. doi: 10.1016/j.wse.2023.06.002
Citation: Ran Gong, Hui-ya Wang, Zhi-xin Hu, Yi-ping Li. 2023: Simulation of internal nitrogen release from bottom sediments in an urban lake using a nitrog. Water Science and Engineering, 16(3): 252-260. doi: 10.1016/j.wse.2023.06.002

Simulation of internal nitrogen release from bottom sediments in an urban lake using a nitrog

doi: 10.1016/j.wse.2023.06.002
Funds:

This work was supported by the Funds of the Nanjing Institute of Technology (Grants No. JCYJ201619 and ZKJ201804).

  • Received Date: 2021-12-20
  • Accepted Date: 2023-06-21
  • Rev Recd Date: 2023-05-24
  • Nutrient release from sediment is considered a significant source for overlying water. Given that nutrient release mechanisms in sediment are complex and difficult to simulate, traditional approaches commonly use assigned parameter values to simulate these processes. In this study, a nitrogen flux model was developed and coupled with the water quality model of an urban lake. After parameter sensitivity analyses and model calibration and validation, this model was used to simulate nitrogen exchange at the sedimentewater interface in eight scenarios. The results showed that sediment acted as a buffer in the sedimentewater system. It could store or release nitrogen at any time, regulate the distribution of nitrogen between sediment and the water column, and provide algae with nitrogen. The most effective way to reduce nitrogen levels in urban lakes within a short time is to reduce external nitrogen loadings. However, sediment release might continue to contribute to the water column until a new balance is achieved. Therefore, effective measures for reducing sediment nitrogen should be developed as supplementary measures. Furthermore, model parameter sensitivity should be individually examined for different research subjects.

     

  • loading
  • Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments:A review and synthesis. Earth Sci. Rev. 123, 53-86. https://doi.org/10.1016/j.earscirev.2013.02.008.
    Bormans, M., Maršálek, B., Jančula, D., 2016. Controlling internal phosphorus loadinginlakesbyphysicalmethodstoreducecyanobacterialblooms:Areview.Aquat. Ecol. 50(3), 407-422. https://doi.org/10.1007/s10452-015-9564-x.
    Boudreau, B.P., 1996. A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments. Comput. Geosci. 22(5), 479-496. https://doi.org/10.1016/0098-3004(95)00115-8.Brady, D.C., Testa, J.M., Di Toro, D.M., Boynton, W.R., Kemp, W.M., 2013.Sediment flux modeling:Calibration and application for coastal systems.Estuar. Coast. Shelf Sci. 117, 107-124. https://doi.org/10.1016/j.ecss.2012.11.003.
    Chen, L., Zhao, Z., Guo, G., Li, J., Wu, W., Zhang, F., Zhang, X., 2022. Effects of muddy water irrigation with different sediment gradations on nitrogen transformation in agricultural soil of Yellow River Basin. Water Sci. Eng. 15(3), 228-236. https://doi.org/10.1016/j.wse.2021.12.005.
    Craig, P.M., 2011. User's Manual for EFDC Explorer:A Pre/post Processor for the Environmental Fluid Dynamics Code. Dynamic Solutions, LLC, Knoxville. https://www.eemodelingsystem.com/efdcplus-theory.
    Di Toro, D.M., 2001. Sediment Flux Modeling. Wiley-Interscience, New York.
    Gong, R., Xu, L., Wang, D., Li, H., Xu, J., 2016. Water quality modeling for a typical urban lake based on the EFDC model. Environ. Model. Assess. 21(5), 643-655. https://doi.org/10.1007/s10666-016-9519-1.
    Hogsett, M., Li, H., Goel, R., 2019. The role of internal nutrient cycling in a freshwater shallow alkaline lake. Environ. Eng. Sci. 36(5), 551-563.https://doi.org/10.1089/ees.2018.0422.
    Horppila, J., 2019. Sediment nutrients, ecological status and restoration of lakes. Water Res. 160, 206-208. https://doi.org/10.1016/j.watres.2019.05.074.
    Horppila, J., Holmroos, H., Niemistö, J., Massa, I., Nygrén, N., Schönach, P., Tapio, P., Tammeorg, O., 2017. Variations of internal phosphorus loading and water quality in a hypertrophic lake during 40 years of different management efforts. Ecol. Eng. 103, 264-274. https://doi.org/10.1016/j.ecoleng.2017.04.018.
    Li, Y., Tang, C., Yu, Z., 2012. Uncertainty and sensitivity analysis of large shallow lake hydrodynamic models. Adv. Water Sci. 23(2), 271-277 (in Chinese).
    Manache, G., Melching, C.S., 2004. Sensitivity analysis of a water-quality model using Latin hypercube sampling. J. Water Resour. Plann. Manag. 130(3), 232-242. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:3(232).
    Nürnberg, G.K., LaZerte, B.D., 2016. More than 20 years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. J.Great Lake. Res. 42(1), 18-27. https://doi.org/10.1016/j.jglr.2015.11.003.
    Paraska, D.W., Hipsey, M.R., Salmon, S.U., 2014. Sediment diagenesis models:Review of approaches, challenges and opportunities. Environ.Model. Software 61, 297-325. https://doi.org/10.1016/j.envsoft.2014.05.011.
    Pei, J., Feng, M., 2020. Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China.Chinese Journal of Environmental Engineering 14(12), 3447-3459.https://doi.org/10.12030/j.cjee.201912021 (in Chinese).
    Pena, M.A., Katsev, S., Oguz, T., Gilbert, D., 2010. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7(3), 933-957. https://doi.org/10.5194/bg-7-933-2010.
    Prakash, S., Vandenberg, J.A., Buchak, E.M., 2015. Sediment diagenesis module for CE-QUAL-W2 part 2:Numerical formulation. Environ. Model.Assess. 20(3), 249-258. https://doi.org/10.1007/s10666-015-9459-1.
    Robson, B.J., Bukaveckas, P.A., Hamilton, D.P., 2008. Modelling and mass balance assessments of nutrient retention in a seasonally-flowing estuary(Swan River Estuary, Western Australia). Estuar. Coast. Shelf Sci. 76(2), 282-292. https://doi.org/10.1016/j.ecss.2007.07.009.
    Rossi, G., Premazzi, G., 1991. Delay in lake recovery caused by internal loading. Water Res. 25(5), 567-575. https://doi.org/10.1016/0043-1354(91)90129-E.
    Stein, M., 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143-151. https://doi.org/10.1080/00401706.1987.10488205.
    Testa, J.M., Brady, D.C., Di Toro, D.M., Boynton, W.R., Cornwell, J.C., Kemp, W.M., 2013. Sediment flux modeling:Simulating nitrogen, phosphorus, and silica cycles. Estuar. Coast. Shelf Sci. 131, 245-263.https://doi.org/10.1016/j.ecss.2013.06.014.
    Van Cappellen, P., Wang, Y., 1996. Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am. J. Sci. 296(3), 197-243. https://doi.org/10.2475/ajs.296.3.197.
    Vandenberg, J.A., Prakash, S., Buchak, E.M., 2015. Sediment diagenesis module for CE-QUAL-W2. Part 1:Conceptual formulation. Environ. Model. Assess. 20(3), 239-247. https://doi.org/10.1007/s10666-014-9428-0.
    Wan, Y., Ji, Z.G., Shen, J., Hu, G., Sun, D., 2012. Three dimensional water quality modeling of a shallow subtropical estuary. Mar. Environ. Res. 82, 76-86. https://doi.org/10.1016/j.marenvres.2012.09.007.
    Wang, Z., Lu, S., Wu, D., Chen, F., 2017. Control of internal phosphorus loading in eutrophic lakes using lanthanum-modified zeolite. Chem. Eng.J. 327, 505-513. https://doi.org/10.1016/j.cej.2017.06.111.
    Wu, Y., Wen, Y., Zhou, J., Wu, Y., 2014. Phosphorus release from lake sediments:Effects of pH, temperature and dissolved oxygen. KSCE J. Civ.Eng. 18(1), 323-329. https://doi.org/10.1007/s12205-014-0192-0.
    Yu, J., Ding, S., Zhong, J., Fan, C., Chen, Q., Yin, H., Zhang, L., Zhang, Y., 2017. Evaluation of simulated dredging to control internal phosphorus release from sediments:Focused on phosphorus transfer and resupply across the sediment-water interface. Sci. Total Environ. 592, 662-673.https://doi.org/10.1016/j.scitotenv.2017.02.219.
    Zhu, H.W., Wang, D.Z., 2014. Relative roles of resuspended particles and pore water in release of contaminants from sediment. Water Sci. Eng. 7(3), 344-350. https://doi.org/10.3882/j.issn.1674-2370.2014.03.009.
    Zhu, M., Zhu, G., Zhao, L., Yao, X., Zhang, Y., Gao, G., Qin, B., 2013. Influence of algal bloom degradation on nutrient release at the sedimentewater interface in Lake Taihu, China. Environ. Sci. Pollut. Control Ser. 20(3), 1803-1811. https://doi.org/10.1007/s11356-012-1084-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (122) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return