Volume 16 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
Xin-chen Wang, Pei Xin, Zeng Zhou, Fu-xin Zhang. 2023: A systematic review of morphological models of salt marshes. Water Science and Engineering, 16(4): 313-323. doi: 10.1016/j.wse.2023.08.006
Citation: Xin-chen Wang, Pei Xin, Zeng Zhou, Fu-xin Zhang. 2023: A systematic review of morphological models of salt marshes. Water Science and Engineering, 16(4): 313-323. doi: 10.1016/j.wse.2023.08.006

A systematic review of morphological models of salt marshes

doi: 10.1016/j.wse.2023.08.006
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. U2040204), the Jiangsu Provincial Natural Science Foundation of China (Grants No. BK2020020, BK20220979, and BK20220993), and the Fundamental Research Funds for the Central University (Grant No. B220202057).

  • Received Date: 2022-11-12
  • Accepted Date: 2023-08-24
  • Available Online: 2023-12-14
  • Salt marshes are among the most important coastal wetlands and provide critical ecological services, including climate regulation, biodiversity maintenance, and blue carbon sequestration. However, most salt marshes worldwide are shrinking, owing to the effects of natural and human factors, such as climate change and artificial reclamation. Therefore, it is essential to understand the decline in the morphological processes of salt marshes, and accordingly, the likely evolution of these marshes, in order to enable measures to be taken to mitigate this decline. To this end, this study presented an extensive systematic review of the current state of morphological models and their application to salt marshes. The emergence of process-based (PB) and data-driven (DD) models has contributed to the development of morphological models. In morphodynamic simulations in PB models, multiple physical and biological factors (e.g., the hydrodynamics of water bodies, sediment erosion, sediment deposition, and vegetation type) have been considered. The systematic review revealed that PB models have been extended to a broader interdisciplinary field. Further, most DD models are based on remote sensing database for the prediction of morphological characteristics with latent uncertainty. Compared to DD models, PB models are more transparent but can be complex and require a lot of computational power. Therefore, to make up for the shortcomings of each model, future studies could couple PB with DD models that consider vegetation, microorganisms, and benthic animals together to simulate or predict the biogeomorphology of salt marsh systems. Nevertheless, this review found that there is a lack of unified metrics to evaluate model performance, so it is important to define clear objectives, use multiple metrics, compare multiple models, incorporate uncertainty, and involve experts in the field to provide guidance in the further study.

     

  • loading
  • [1]
    Achete, F.M., van der Wegen, M., Roelvink, D., Jaffe, B., 2015. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling. Hydrology and Earth System Sciences 19(6), 2837-2857. https://doi.org/10.5194/hess-19-2837-2015.
    [2]
    Altor, A.E., Mitsch, W.J., 2008. Pulsing hydrology, methane emissions and carbon dioxide fluxes in created marshes: A 2-year ecosystem study. Wetlands 28(2), 423-438. https://doi.org/10.1672/07-98.1.
    [3]
    Anthony, A., Atwood, J., August, P., Byron, C., Cobb, S., Foster, C., Fry, C., Gold, A., Hagos, K., Heffner, L., et al., 2016. Coastal lagoons and climate change: Ecological and social ramifications in U.S. Atlantic and Gulf Coast ecosystems. Ecology and Society 14(1), 8. https://doi.org/10.5751/ES-02719-140108.
    [4]
    Armenio, E., De Serio, F., Mossa, M., Petrillo, A., 2018. Coastline evolution based on statistical analysis and modelling. Natural Hazards and Earth System Sciences Discussions 19(1), 1-28. https://doi.org/10.5194/nhess-2018-239.
    [5]
    Baar, A.W., Albernaz, M.B., van Dijk, W.M., Kleinhans, M.G., 2019. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nature Communications 10, 4903. https://doi.org/10.1038/s41467-019-12753-x.
    [6]
    Balke, T., Bouma, T.J., Herman, P.M.J., Horstman, E.M., Sudtongkong, C., Webb, E.L., 2013. Cross-shore gradients of physical disturbance in mangroves: Implications for seedling establishment. Biogeosciences 10, 5411. https://doi.org/10.5194/bg-10-5411-2013.
    [7]
    Bendoni, M., Mel, R., Solari, L., Lanzoni, S., Francalanci, S., Oumeraci, H., 2016. Insights into lateral marsh retreat mechanism through localized field measurements. Water Resources Research 52(2), 1446-1464. https://doi.org/10.1002/2015WR017966.
    [8]
    Best, U.S.N., Van der Wegen, M., Dijkstra, J., Willemsen, P.W.J.M., Borsje, B.W., Roelvink, D.J.A., 2018. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environmental Modelling & Software 109, 152-166. https://doi.org/10.1016/j.envsoft.2018.08.004.
    [9]
    Billy, J., Robin, N., Hein, C. J., Certain, R., FitzGerald, D.M., 2015. Insight into the late Holocene sea-level changes in the NW Atlantic from a paraglacial beach-ridge plain south of Newfoundland. Geomorphology 248, 134-146. https://doi.org/10.1016/j.geomorph.2015.07.033.
    [10]
    Bruckner, M.Z.M., Schwarz, C., van Dijk, W.M., van Oorschot, M., Douma, H., Kleinhans, M.G., 2019. Salt marsh establishment and eco-engineering effects in dynamic estuaries determined by species growth and mortality. Journal of Geophysical Research: Earth Surface 124(12), 2962-2986. https://doi.org/10.1029/2019JF005092.
    [11]
    Chen, L., Stone, M.C., Acharya, K., Steinhaus, K.A., 2011. Mechanical analysis for emergent vegetation in flowing fluids. Journal of Hydraulic Research 49(6), 766-774. https://doi.org/10.1080/00221686.2011.621359.
    [12]
    Chernetsky, A.S., Schuttelaars, H.M., Talke, S.A., 2010. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics 60(5), 1219-1241. https://doi.org/10.1007/s10236-010-0329-8.
    [13]
    Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., Machmuller, M., 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7(2), 73-78. https://doi.org/https://doi.org/10.1890/070219.
    [14]
    D'Alpaos, A., Lanzoni, S., Mudd, S.M., Fagherazzi, S., 2006. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuarine Coastal and Shelf Science 69(3-4), 311-324. https://doi.org/10.1016/j.ecss.2006.05.002.
    [15]
    D'Alpaos, A., Lanzoni, S., Marani, M., Bonornetto, A., Cecconi, G., Rinaldo, A., 2007. Spontaneous tidal network formation within a constructed salt marsh: Observations and morphodynamic modelling. Geomorphology 91(3-4), 186-197. https://doi.org/10.1016/j.geomorph.2007.04.013.
    [16]
    D'Alpaos, A., 2011. The mutual influence of biotic and abiotic components on the long-term ecomorphodynamic evolution of salt-marsh ecosystems. Geomorphology 126(3), 269-278. https://doi.org/10.1016/j.geomorph.2010.04.027.
    [17]
    de Vet, P.L.M., van Prooijen, B.C., Wang, Z.B., 2017. The differences in morphological development between the intertidal flats of the Eastern and Western Scheldt. Geomorphology 281, 31-42. https://doi.org/10.1016/j.geomorph.2016.12.031.
    [18]
    Dissanayake, D., Ranasinghe, R., Roelvink, J.A., 2009. Effect of sea level rise in tidal inlet evolution: A numerical modelling approach. Journal of Coastal Research 12(7), 942-946. https://doi.org/10.2166/wcc.2021.202.
    [19]
    Dissanayake, D., Wurpts, A., Miani, M., Knaack, H., Niemeyer, H.D., Roelvink, J.A., 2012. Modelling morphodynamic response of a tidal basin to an anthropogenic effect: Ley Bay, East Frisian Wadden Sea - applying tidal forcing only and different sediment fractions. Coastal Engineering 67(1), 14-28. https://doi.org/10.1016/j.coastaleng.2012.04.001.
    [20]
    Dongeren, A.R.v., Vriend, H.J.d., 1994. A model of morphological behaviour of tidal basins. Coastal Engineering 22(3), 287-310. https://doi.org/10.1016/0378-3839(94)90040-X.
    [21]
    Elmilady, H., van der Wegen, M., Roelvink, D., van der Spek, A., 2020. Morphodynamic evolution of a fringing sandy shoal: From tidal levees to sea level rise. Journal of Geophysical Research: Earth Surface 125 (6), 397. https://doi.org/10.1029/2019JF005397.
    [22]
    Elmilady, H., van der Wegen, M., Roelvink, D., van der Spek, A., 2022. Modeling the morphodynamic response of estuarine intertidal shoals to sea-level rise. Journal of Geophysical Research: Earth Surface 127(1), 152. https://doi.org/10.1029/2021JF006152.
    [23]
    Elsayed, S., Oumeraci, H., 2016. Combined modelling of coastal barrier breaching and induced flood propagation using XBeach. Hydrology 3(4), 34. https://doi.org/10.3390/hydrology3040032.
    [24]
    Enriquez, A.R., Marcos, M., Falques, A., Roelvink, D., 2019. Assessing beach and dune erosion and vulnerability under sea level rise: A case study in the Mediterranean Sea. Frontiers in Marine Science 6 (4), 12. https://doi.org/10.3389/fmars.2019.00004.
    [25]
    Fagherazzi, S., Kirwan, M., Mudd, S., Guntenspergen, G., Temmerman, S., D'Alpaos, A., van de Koppel, J., Rybczyk, J., Reyes, E., Craft, C., et al., 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50(1), RG1002. https://doi.org/10.1029/2011RG000359.
    [26]
    Fayyaz, M., Shafieefar, M., Dastgheib, A., 2017. Evaluation of the effects of morphological parameters on equilibrium of tidal basins. Journal of Waterway, Port, Coastal, and Ocean Engineering 143(4), 04017003. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000386.
    [27]
    Ferrarin, C., Umgiesser, G., Roland, A., Bajo, M., De Pascalis, F., Ghezzo, M., Scroccaro, I., 2016. Sediment dynamics and budget in a microtidal lagoon - A numerical investigation. Marine Geology 381, 163-174. https://doi.org/10.1016/j.margeo.2016.09.006.
    [28]
    Fitch, R., Theodose, T., Dionne, M., 2009. Relationships among upland development, nitrogen, and plant community composition in a maine salt marsh. Wetlands 29(4), 1179-1188. https://doi.org/10.1672/08-154.1.
    [29]
    Fleri, J.R., Lera, S., Gerevini, A., Staver, L., Nardin, W., 2019. Empirical observations and numerical modelling of tides, channel morphology, and vegetative effects on accretion in a restored tidal marsh. Earth Surface Processes and Landforms 44(11), 2223-2235. https://doi.org/10.1002/esp.4646.
    [30]
    Franz, G., Delpey, M.T., Brito, D., Pinto, L., Leitao, P., Neves, R., 2017. Modelling of sediment transport and morphological evolution under the combined action of waves and currents. Ocean Science 13(5), 673-690. https://doi.org/10.5194/os-13-673-2017.
    [31]
    Gabler, C.A., Osland, M.J., Grace, J.B., Stagg, C.L., Day, R.H., Hartley, S.B., Enwright, N.M., From, A.S., McCoy, M.L., McLeod, J.L., 2017. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change 7(2), 142-147. https://doi.org/10.1038/nclimate3203.
    [32]
    Ghosh, M., Mondal, K.C., Roy, A., 2022. Recognition of co-existence pattern of salt marshes and mangroves for littoral forest restoration. Ecological Informatics 71, 101769. https://doi.org/10.1016/j.ecoinf.2022.101769.
    [33]
    Gibson, R., Atkinson, R., Gordon, J., Editors, T., In, F., Airoldi, L., Beck, M., 2007. Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology: An Annual Review 45, 345-405. https://doi.org/10.1201/9781420050943.ch7.
    [34]
    Gong, Z., Mou, K., Wang, Q., Qiu, H., Zhang, C., Zhou, D., 2021. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Science of the Total Environment 769, 144572. https://doi.org/10.1016/j.scitotenv.2020.144572.
    [35]
    Grandjean, T.J., de Simit, J.C., van Belzen, J., Fivash, G.S., van Dalen, J., Ysebaert, T., Bouma, T.J., 2023. Morphodynamic signatures derived from daily surface elevation dynamics can explain the morphodynamic development of tidal flats. Water Science and Engineering 16(1), 14-25. https://doi.org/10.1016/j.wse.2022.11.003.
    [36]
    Guo, L.C., van der Wegen, M., Roelvink, D.J.A., Wang, Z.B., He, Q., 2015. Long-term, process-based morphodynamic modeling of a fluvio-deltaic system, part I: The role of river discharge. Continental Shelf Research 109, 95-111. https://doi.org/10.1016/j.csr.2015.09.002.
    [37]
    Guo, L.C., van der Wegen, M., Wang, Z.B., Roelvink, D., He, Q., 2016. Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large-scale estuarine morphodynamics by means of a 1-D model. Journal of Geophysical Research: Earth Surface 121(5), 1000-1022. https://doi.org/10.1002/2016jf003821.
    [38]
    Henry, P.Y., Myrhaug, D., 2013. Wave-induced drag force on vegetation under shoaling random waves. Coastal Engineering 78, 13-20. https://doi.org/10.1016/j.coastaleng.2013.03.004.
    [39]
    Horton, R.E., 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. GSA Bulletin 56(3), 275-370. https://doi.org/10.1130/0016-7606.
    [40]
    Hu, Z., Wang, Z.B., Zitman, T.J., Stive, M.J.F., Bouma, T.J., 2015. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory. Journal of Geophysical Research: Earth Surface 120(9), 1803-1823. https://doi.org/10.1002/2015JF003486.
    [41]
    Jiang, L., Gerkema, T., Idier, D., Slangen, A.B.A., Soetaert, K., 2020. Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean Science 16(2), 307-321. https://doi.org/10.5194/os-16-307-2020.
    [42]
    Jung, R., Adolph, W., Ehlers, M., Farke, H., 2015. A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea - A case study at Norderney. Remote Sensing of Environment 170, 188-202. https://doi.org/10.1016/j.rse.2015.09.018.
    [43]
    Kakeh, N., Coco, G., Marani, M., 2016. On the morphodynamic stability of intertidal environments and the role of vegetation. Advances in Water Resources 93, 303-314. https://doi.org/10.1016/j.advwatres.2015.11.003.
    [44]
    Kalra, T.S., Ganju, N.K., Aretxabaleta, A.L., Carr, J.A., Defne, Z., Moriarty, J.M., 2021. Modeling marsh dynamics using a 3-D coupled wave-flow-sediment model. Frontiers in Marine Science 8(20), 921. https://doi.org/10.3389/fmars.2021.740921.
    [45]
    Kasprak, A., Brasington, J., Hafen, K., Williams, R.D., Wheaton, J.M., 2019. Modelling braided river morphodynamics using a particle travel length framework. Earth Surface Dynamics 7(1), 247-274. https://doi.org/10.5194/esurf-7-247-2019.
    [46]
    Kearney, W.S., Fagherazzi, S., 2016. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications 7(1), 12287. https://doi.org/10.1038/ncomms12287.
    [47]
    Kennish, M.J., 2001. Coastal salt marsh systems in the US: A review of anthropogenic impacts. Journal of Coastal Research 17(3), 731-748.
    [48]
    Kirby, R., 2000. Practical implications of tidal flat shape. Continental Shelf Research 20(10-11), 1061-1077. https://doi.org/10.1016/S0278-4343(00)00012-1.
    [49]
    Kirwan, M., Megonigal, P., 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53-60. https://doi.org/10.1038/nature12856.
    [50]
    Kirwan, M.L., Temmerman, S., Skeehan, E.E., Guntenspergen, G.R., Fagherazzi, S., 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6(3), 253-260. https://doi.org/10.1038/nclimate2909.
    [51]
    Kombiadou, K., Costas, S., Roelvink, D.J.A., 2021. Simulating destructive and constructive morphodynamic processes in steep beaches. Journal of Marine Science and Engineering 9(1), 86. https://doi.org/10.3390/jmse9010086.
    [52]
    Larsen, L.G., Harvey, J.W., Crimaldi, J.P., 2009. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems. Ecological Engineering 35(12), 1773-1785. https://doi.org/10.1016/j.ecoleng.2009.09.002.
    [53]
    Leonardi, N., Li, X., Carnacina, I., 2019. A numerical investigation on tidally induced sediment transport and morphological changes with changing sea level in South-East England. Geosciences 9 (3), 140. https://doi.org/10.3390/geosciences9030140.
    [54]
    Liang, H.D., Kuang, C.P., Olabarrieta, M., Song, H.L., Ma, Y., Dong, Z.C., Han, X.J., Zuo, L.M., Liu, Y.C., 2018. Morphodynamic responses of Caofeidian channel-shoal system to sequential large-scale land reclamation. Continental Shelf Research 165, 12-25. https://doi.org/10.1016/j.csr.2018.06.004.
    [55]
    Lodder, Q.J., Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., de Looff, H., Townend, I.H., 2019. Future response of the Wadden Sea tidal basins to relative sea-level rise - An aggregated modelling approach. Water 11(10), 2198. https://doi.org/10.3390/w11102198.
    [56]
    Lou, Y., Dai, Z., Long, C., Dong, H., Wei, W., Ge, Z., 2022. Image-based machine learning for monitoring the dynamics of the largest salt marsh in the Yangtze River Delta. Journal of Hydrology 608, 127681. https://doi.org/10.1016/j.jhydrol.2022.127681.
    [57]
    Luan, H.L., Ding, P.X., Wang, Z.B., Ge, J.Z., 2017. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends. Geomorphology 290, 347-364. https://doi.org/10.1016/j.geomorph.2017.04.016.
    [58]
    Luhar, M., Nepf, H.M., 2013. From the blade scale to the reach scale: A characterization of aquatic vegetative drag. Advances in Water Resources 51, 305-316. https://doi.org/10.1016/j.advwatres.2012.02.002.
    [59]
    Mancini, G., Briganti, R., McCall, R., Dodd, N., Zhu, F.F., 2021. Numerical modelling of intra-wave sediment transport on sandy beaches using a non-hydrostatic, wave-resolving model. Ocean Dynamics 71(1), 1-20. https://doi.org/10.1007/s10236-020-01416-x.
    [60]
    Marani, M., Belluco, E., D'Alpaos, A., Defina, A., Lanzoni, S., Rinaldo, A., 2003. On the drainage density of tidal networks. Water Resources Research 39(2), 1040. https://doi.org/10.1029/2001WR001051.
    [61]
    Mariotti, G., Murshid, S., 2018. A 2D tide-averaged model for the long-term evolution of an idealized tidal basin-inlet-delta system. Journal of Marine Science and Engineering 6(4), 154. https://doi.org/10.3390/jmse6040154.
    [62]
    McKee, K.L., Cahoon, D.R., Feller, I.C., 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16(5), 545-556. https://doi.org/10.1111/j.1466-8238.2007.00317.x.
    [63]
    McOwen, C.J., Weatherdon, L.V., Van Bochove, J.W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D., Kingston, N., Martin, C.S., Spalding, M., et al., 2017. A global map of saltmarshes. Biodiversity Data Journal 5, e11764. https://doi.org/10.3897/BDJ.5.e11764.
    [64]
    Mudd, S.M., Fagherazzi, S., Morris, J.T., Furbish, D.J., 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. The Ecogeomorphology of Tidal Marshes 12(1), 165-188. https://doi.org/10.1029/CE059p0165.
    [65]
    Ni, W.F., Wang, Y.P., Symonds, A.M., Collins, M.B., 2014. Intertidal flat development in response to controlled embankment retreat: Freiston Shore, The Wash, UK. Marine Geology 355, 260-273. https://doi.org/10.1016/j.margeo.2014.06.001.
    [66]
    Nnafie, A., de Swart, H.E., Calvete, D., Garnier, R., 2014. Effects of sea level rise on the formation and drowning of shoreface-connected sand ridges, a model study. Continental Shelf Research 80, 32-48. https://doi.org/10.1016/j.csr.2014.02.017.
    [67]
    Olabarrieta, M., Geyer, W.R., Coco, G., Friedrichs, C.T., Cao, Z.D., 2018. Effects of density-driven flows on the long-term morphodynamic evolution of funnel-shaped estuaries. Journal of Geophysical Research: Earth Surface. 123(11), 2901-2924. https://doi.org/10.1029/2017jf004527.
    [68]
    Passeri, D.L., Hagen, S.C., Plant, N.G., Bilskie, M.V., Medeiros, S.C., Alizad, K., 2016. Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico. Earth's Future 4(5), 159-176. https://doi.org/10.1002/2015EF000332.
    [69]
    Paul, M., Rupprecht, F., Moller, I., Bouma, T. J., Spencer, T., Kudella, M., Wolters, G., van Wesenbeeck, B.K., Jensen, K., Miranda-Lange, M., Schimmels, S., 2016. Plant stiffness and biomass as drivers for drag forces under extreme wave loading: A flume study on mimics. Coastal Engineering. 117, 70-78. https://doi.org/10.1016/j.coastaleng.2016.07.004.
    [70]
    Perillo, G.M.E., Iribarne, O.O., 2003. New mechanisms studied for creek formation in tidal flats: From crabs to tidal channels. Eos, Transactions American Geophysical Union 84(1), 1-5. https://doi.org/10.1029/2003EO010001.
    [71]
    Pickering, C., Byrne, J., 2014. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research & Development 33(3), 534-548. https://doi.org/10.1080/07294360.2013.841651.
    [72]
    Piton, V., Herrmann, M., Lyard, F., Marsaleix, P., Duhaut, T., Allain, D., Ouillon, S., 2020. Sensitivity study on the main tidal -of the Gulf of Tonkin by using the frequency-domain tidal solver in T-UGOm. Geoscientific Model Development 13, 1583-1607. https://doi.org/10.5194/gmd-13-1583-2020.
    [73]
    Qi, Y., Liu, D., Huang, X., Pu, X., 2019. Topographical mapping of a bare tidal flat outside a mangrove area based on the waterline method and an iterative hydrodynamic model: A case study of Yingluo Bay, South China. Marine Geodesy 42, 1-23. https://doi.org/10.1080/01490419.2019.1583617.
    [74]
    Ralston, D., Geyer, W., Traykovski, P., Nidzieko, N., 2013. Effects of estuarine and fluvial processes on sediment transport over deltaic tidal flats. Continental Shelf Research 60, S40-S57. https://doi.org/10.1016/j.csr.2012.02.004.
    [75]
    Rizzetto, F., Tosi, L., 2012. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy). Global and Planetary Change 92-93, 191-197. https://doi.org/10.1016/j.gloplacha.2012.05.022.
    [76]
    Schumm, S.A., 1956. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. GSA Bulletin 67(5), 597-646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
    [77]
    Schwarz, C., Ye, Q.H., van der Wal, D., Zhang, L.Q., Bouma, T., Ysebaert, T., Herman, P.M.J., 2014. Impacts of salt marsh plants on tidal channel initiation and inheritance. Journal of Geophysical Research: Earth Surface 119(2), 385-400. https://doi.org/10.1002/2013jf002900.
    [78]
    Schwarz, C., Gourgue, O., van Belzen, J., Zhu, Z.C., Bouma, T.J., van de Koppel, J., Ruessink, G., Claude, N., Temmerman, S., 2018. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nature Geoscience 11(9), 672-677. https://doi.org/10.1038/s41561-018-0180-y.
    [79]
    Shi, B., Cooper, J.R., Li, J., Yang, Y., Yang, S.L., Luo, F., Yu, Z., Wang, Y.P., 2019. Hydrodynamics, erosion and accretion of intertidal mudflats in extremely shallow waters. Journal of Hydrology 573, 31-39. https://doi.org/10.1016/j.jhydrol.2019.03.065.
    [80]
    Siemes, R.W.A., Borsje, B.W., Daggenvoorde, R.J., Hulscher, S.J.M.H., 2020. Artificial structures steer morphological development of salt marshes: A model study. Journal of Marine Science and Engineering 8(5), 326. https://doi.org/10.3390/jmse8050326.
    [81]
    Silvestri, S., Defina, A., Marani, M., 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science 62(1), 119-130. https://doi.org/10.1016/j.ecss.2004.08.010.
    [82]
    Stark, J., Smolders, S., Meire, P., Temmerman, S., 2017. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary. Estuarine Coastal and Shelf Science 198, 138-155. https://doi.org/10.1016/j.ecss.2017.09.004.
    [83]
    Strahler, A.N., 1952. Dynamic basis of geomophology. GSA Bulletin 63 (9), 923-938. https://doi.org/10.1130/0016-7606.
    [84]
    Sun, L., Shao, D., Xie, T., Gao, W., Ma, X., Ning, Z., Cui, B., 2020. How does Spartina alterniflora invade in salt marsh in relation to tidal channel networks? Patterns and processes. Remote Sensing 12(18), 2983. https://doi.org/10.3390/rs12182983.
    [85]
    Tao, J.F., Xu, F., Yao, P., Zhou, Z., Zhang, C.K., 2018. The variations of sediment transport patterns in the radial sand ridges along the Jiangsu Coast, China over the last 30 Years. Journal of Coastal Research 85(1), 216-220. https://doi.org/10.2112/si85-044.1.
    [86]
    Tao, J.F., Wang, Z.B., Zhou, Z., Xu, F., Zhang, C.K., Stive, M.J.F., 2019. A morphodynamic modeling study on the formation of the large-scale radial sand ridges in the Southern Yellow Sea. Journal of Geophysical Research: Earth Surface 124(7), 1742-1761. https://doi.org/10.1029/2018jf004866.
    [87]
    Temmerman, S., Bouma, T.J., Govers, G., Wang, Z.B., De Vries, M.B., Herman, P.M.J., 2005. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F04019. https://doi.org/10.1029/2005JF000301.
    [88]
    Temmerman, S., Bouma, T.J., Van de Koppel, J., Van der Wal, D., De Vries, M.B., Herman, P.M.J., 2007. Vegetation causes channel erosion in a tidal landscape. Geology 35(7), 631-634. https://doi.org/10.1130/g23502a.1.
    [89]
    Tognin, D., D'Alpaos, A., Marani, M., Carniello, L., 2021. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nature Geoscience 14(12), 906-911. https://doi.org/10.1038/s41561-021-00853-7.
    [90]
    van der Wegen, M., Roelvink, J.A., 2012. Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study, the Netherlands. Geomorphology 179, 152-167. https://doi.org/10.1016/j.geomorph.2012.08.007.
    [91]
    van der Wegen, M., Jaffe, B., Foxgrover, A., Roelvink, D., 2017. Mudflat morphodynamics and the impact of sea level rise in South San Francisco Bay. Estuaries and Coasts 40(1), 37-49. https://doi.org/10.1007/s12237-016-0129-6.
    [92]
    Van Goor, M.A., Zitman, T.J., Wang, Z.B., Stive, M.J.F., 2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Marine Geology 202 (3-4), 211-227. https://doi.org/10.1016/S0025-3227(03)00262-7.
    [93]
    Verhaar, P.M., Biron, P.M., Ferguson, R.I., Hoey, T.B., 2008. A modified morphodynamic model for investigating the response of rivers to short-term climate change. Geomorphology 101(4), 674-682. https://doi.org/10.1016/j.geomorph.2008.03.010.
    [94]
    Wang, S., Chen, F., Meng, Y., Zhu, Q., 2021. Spatiotemporal distribution characteristics of nutrients in the drowned tidal inlet under the influence of tides: A case study of Zhanjiang Bay, China. International Journal of Environmental Research and Public Health 18, 2089. https://doi.org/10.3390/ijerph18042089.
    [95]
    Wang, Y.W., Yu, Q., Gao, S., Flemming, B., 2014. Modeling the effect of progressive grain-size sorting on the scale dependence of back-barrier tidal basin morphology. Continental Shelf Research 91, 26-36. https://doi.org/10.1016/j.csr.2014.09.006.
    [96]
    Wang, Y.W., Yu, Q., Jiao, J., Tonnon, P.K., Wang, Z.B., Gao, S., 2016. Coupling bedform roughness and sediment grain-size sorting in modelling of tidal inlet incision. Marine Geology 381, 128-141. https://doi.org/10.1016/j.margeo.2016.09.004.
    [97]
    Wang, Y.W., Wang, Y.P., Yu, Q., Du, Z.Y., Wang, Z.B., Gao, S., 2019. Sand-mud tidal flat morphodynamics influenced by alongshore tidal currents. Journal of Geophysical Research: Oceans 124(6), 3818-3836. https://doi.org/10.1029/2018jc014550.
    [98]
    Wang, Z., Jeuken, M.C.J.L., Gerritsen, H., de Vriend, H., Kornman, B.A., 2002. Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Continental Shelf Research 22(7), 2599-2609. https://doi.org/10.1016/S0278-4343(02)00134-6.
    [99]
    Wang, Z.B., Elias, E.P.L., van der Spek, A.J.F., Lodder, Q.J., 2018. Sediment budget and morphological development of the Dutch Wadden Sea: Impact of accelerated sea-level rise and subsidence until 2100. Netherlands Journal of Geosciences 97(3), 183-214. https://doi.org/10.1017/njg.2018.8.
    [100]
    Willgoose, G., Hancock, G., 1998. Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms 23(7), 611-623. https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<611::AID-ESP872>3.0.CO;2-Y.
    [101]
    Winterwerp, J.C., Zhou, Z., Battista, G., Van Kessel, T., Jagers, H.R.A., Van Maren, D.S., Van der Wegen, M., 2018. Efficient consolidation model for morphodynamic simulations in low-SPM environments. Journal of Hydraulic Engineering 144(8), 04018055. https://doi.org/10.1061/(asce)hy.1943-7900.0001477.
    [102]
    Wu, D., Shen, Y., Fang, R., 2013. A morphological analysis of tidal creek network patterns on the central Jiangsu coast. Acta Geographica Sinica 68(7), 955-965 (in Chinese).
    [103]
    Wu, Y.A., Liu, J.K., Yan, G.X., Zhai, J.X., Cong, L., Dai, L.Y., Zhang, Z.M., Zhang, M.X., 2020. The size and distribution of tidal creeks affects salt marsh restoration. Journal of Environmental Management 259, 110070. https://doi.org/10.1016/j.jenvman.2020.110070.
    [104]
    Xie, D.F., Gao, S., Wang, Z.B., Pan, C.H., Wu, X.G., Wang, Q.S., 2017. Morphodynamic modeling of a large inside sandbar and its dextral morphology in a convergent estuary: Qiantang Estuary, China. Journal of Geophysical Research: Earth Surface 122(8), 1553-1572. https://doi.org/10.1002/2017jf004293.
    [105]
    Xie, Q., Yang, J., Lundstrom, T.S., 2019. Field studies and 3D modelling of morphodynamics in a meandering river reach dominated by tides and suspended load. Fluids 4(1), 15. https://doi.org/10.3390/fluids4010015.
    [106]
    Xin, P., Wilson, A., Shen, C., Ge, Z., Moffett, K.B., Santos, I.R., Chen, X., Xu, X., Yau, Y.Y.Y., Moore, W., et al., 2022. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Reviews of Geophysics 60(1), 1-54. https://doi.org/10.1029/2021RG000740.
    [107]
    Xu, F., Coco, G., Zhou, Z., Tao, J.F., Zhang, C.K., 2017. A numerical study of equilibrium states in tidal network morphodynamics. Ocean Dynamics 67(12), 1593-1607. https://doi.org/10.1007/s10236-017-1101-0.
    [108]
    Ye, Z., Shi, F., Zhao, X., Hu, Z., Malej, M., 2021. A data-driven approach to modeling subgrid-scale shallow marsh hydrodynamics. Coastal Engineering 166, 103856. https://doi.org/10.1016/j.coastaleng.2021.103856.
    [109]
    Yin, Y.Z., Karunarathna, H., Reeve, D.E., 2019. Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Marine Geology 407, 229-247. https://doi.org/10.1016/j.margeo.2018.11.005.
    [110]
    Yuan, S., Tang, H., Li, K., Xu, L., Xiao, Y., Gualtieri, C., Rennie, C., Melville, B., 2021. Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resources Research 57(3), e2020WR028284. https://doi.org/10.1029/2020WR028284.
    [111]
    Zhao, B., Liu, Y., Xu, W., Liu, Y., Sun, J., Wang, L., 2019. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing 11(20), 2426. https://doi.org/10.3390/rs11202426.
    [112]
    Zhou, Z., Olabarrieta, M., Stefanon, L., D'Alpaos, A., Carniello, L., Coco, G., 2014. A comparative study of physical and numerical modeling of tidal network ontogeny. Journal of Geophysical Research: Earth Surface 119(4), 892-912. https://doi.org/10.1002/2014JF003092.
    [113]
    Zhou, Z., Coco, G., van der Wegen, M., Gong, Z., Zhang, C.K., Townend, I., 2015. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves. Continental Shelf Research 104, 76-91. https://doi.org/10.1016/j.csr.2015.05.010.
    [114]
    Zhou, Z., Ye, Q., Coco, G., 2016. A one-dimensional biomorphodynamic model of tidal flats: Sediment sorting, marsh distribution, and carbon accumulation under sea level rise. Advances in Water Resources 93, 288-302. https://doi.org/10.1016/j.advwatres.2015.10.011.
    [115]
    Zhou, Z., Liu, Q., Fan, D.D., Coco, G., Gong, Z., Moller, I., Xu, F., Townend, I., Zhang, C.K., 2021. Simulating the role of tides and sediment characteristics on tidal flat sorting and bedding dynamics. Earth Surface Processes and Landforms 46(11), 2163-2176. https://doi.org/10.1002/esp.5166.
    [116]
    Zhou, Z., Liang, M., Chen, L., Xu, M., Chen, X, Geng, L., Li, Huan, Serrano, D., Zhang, H., Gong, Z., et al., 2022. Processes, feedbacks, and morphodynamic evolution of tidal flat marsh systems: Progress and challenges. Water Science and Engineering, 15(2), 89-102. https://doi.org/10.1016/j.wse.2021.07.002.
    [117]
    Zhu, H., Zuo, L.Q., Reyns, J., Lu, Y.J., Dastgheib, A., Roelvink, D., 2020. Morphologic modelling of tidal inlet on a barrier-lagoon coast: Case study of the Laolonggou tidal inlet in the Bohai Bay. Applied Ocean Research 94, 101967. https://doi.org/10.1016/j.apor.2019.101967.
    [118]
    Zhu, Q., van Prooijen, B.C., Wang, Z.B., Yang, S.L., 2017. Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze River Delta. Marine Geology 385, 160-172. https://doi.org/10.1016/j.margeo.2017.01.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (81) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return