Volume 17 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
Qiong-qiong Xia, Wei Shang, Xing-can Zheng, Wen-an Zhang, Ya-xiong Wang, Yong-li Sun, Peng-feng Li. 2024: Effect of aeration on low-substrate CANON process. Water Science and Engineering, 17(3): 292-299. doi: 10.1016/j.wse.2023.11.005
Citation: Qiong-qiong Xia, Wei Shang, Xing-can Zheng, Wen-an Zhang, Ya-xiong Wang, Yong-li Sun, Peng-feng Li. 2024: Effect of aeration on low-substrate CANON process. Water Science and Engineering, 17(3): 292-299. doi: 10.1016/j.wse.2023.11.005

Effect of aeration on low-substrate CANON process

doi: 10.1016/j.wse.2023.11.005
Funds:

This work was supported by the China National Science and Technology Major Project for Water Pollution Control and Treatment (Grant No. 2017ZX07106005).

  • Received Date: 2022-07-20
  • Accepted Date: 2023-10-24
  • Available Online: 2024-08-24
  • The completely autotrophic nitrogen removal over nitrite (CANON) is a new type of nitrogen removal process developed in recent years. The control of dissolved oxygen (DO) in this process is relatively stringent, especially in low-substrate wastewater treatment. However, the results of studies on the operation of the process in different aeration modes are still controversial, and investigations on biofilm type CANON reactors are limited. In this study, a pilot-scale CANON bioreactor filled with suspended carriers was investigated on the treatment of wastewater at low ammonium concentrations, and the effect of the aeration mode on autotrophic nitrogen removal was evaluated. Seven conditions with various aeration on/off times and DO levels were tested. The results showed that an intermittent aeration with a 20-min/20-min aeration on/off time and DO concentrations of 1.0–1.3 mg/L at the end of the aeration period was appropriate, potentially inhibiting nitrite oxidizing bacteria (NOB) and keeping the total nitrogen (TN) removal rate at a relatively high level of 76.7% ± 2.5%. In the optimal aeration mode, the reactor achieved effluent TN and concentrations of (11.1 ± 3.3) mg/L and (3.6 ± 2.3) mg/L, respectively, with a hydraulic retention time of 12 h and an influent concentration of (48.6 ± 9.4) mg/L at 30.1°C ± 2.2°C. The results of metagenomic sequencing for microorganisms on carriers indicated that the main nitrogen removal bacteria in the reactor were Proteobacteria, Planctomycetes, and Nitrospirae. The NOB genus Nitrospira was completely inhibited by intermittent aeration. Candidatus Kuenenia had strong adaptability to low-concentration wastewater.

     

  • loading
  • Blackburne, R., Vadivelu, V.M., Yuan, Z.G., Keller, J., 2007. Kinetic characterization of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research 41(14), 3033-3042. https://doi.org/10.1016/j.watres.2007.01.043.
    Brockmann, D., Morgenroth, E., 2010. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering. Water Research 44(6), 1995-2009. https://doi.org/10.1016/j.watres.2009.12.010.
    Canziani, R., Emondi, V., Garavaglia, M., Malpei, F., Pasinetti, E., Buttiglieri, G., 2006. Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. Journal of Membrane Science 286(1-2), 202-212. https://doi.org/10.1016/j.memsci.2006.09.044.
    Chandran, K., Smets, B.F., 2000. Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting. Biotechnology and Bioengineering 68(4), 396-406. https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<396::AID-BIT5>3.3.CO;2-J.
    Chen, J., Wang, H.C., Wett, B., 2015. Challenge and aspect of municipal wastewater treatment going for mainstream deammonification. Water and Wastewater Engineering 41(10), 29-34 (in Chinese). https://doi.org/10.13789/j.cnki.wwe1964.2015.0438.
    Chen, Y.Z., Zhao, Z.C., Liu, H., Ma, Y.H., An, F.J., Huang, J.M., 2019. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration. Chemosphere 245, 125650. https://doi.org/10.1016/j.chemosphere.2019.125650.
    Coskuner, G., Curtis, T.P., 2009. In situ characterization of nitrifiers in an activated sludge plant: Detection of Nitrobacter spp. Applied Microbiology 93(3), 431-437. https://doi.org/10.1046/j.1365-2672.2002.01715.x.
    Daigger, G.T., 2014. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environment Research 86(2), 201-209. https://doi.org/10.2175/106143013X13807328849459.
    Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., Wagner, M., 2001. In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67(11), 5273-5284. https://doi.org/10.1128/AEM.67.11.5273-5284.2001.
    Esther, K.M., Georg, C., Carolin, R., Bernard, V., Frank, R., 2015. Response of ammonia-oxidizing bacteria and archaea to biochemical quality of organic inputs combined with mineral nitrogen fertilizer in an arable soil. Applied Soil Ecology 95, 128-139. https://doi.org/10.1016/j.apsoil.2015.06.019.
    Feng, Z.L., Wu, Y.H., Shi, Y.H., Xiao, L.W., Wu, G.X., 2019. Successful startup of one-stage partial nitritation and anammox system through cascade oxygen supply and potential ecological network analysis. Science of The Total Environment 696, 134065. https://doi.org/10.1016/j.scitotenv.2019.134065.
    Gao, D.W., Dou, Y., Wang, X.L., 2015. Cultivation process of AOB-anammox granular sludge under micro-aerobic condition. Journal of Beijing University of Technology 41(10), 1462-1468. https://doi.org/10.11936/bjutxb2015040027.
    Gilbert, E.M, Agrawal, S., Brunner, F., Schwartz, T., Horn, H., Lackner, S., 2014. Response of different Nitrospira species to anoxic periods depends on operational DO. Environment Science and Technology 48(5), 2934-2941. https://doi.org/10.1021/es404992g.
    Guo, W.S., Ngo, H.H., Dharmawan, F., Palmer, C.G., 2010. Roles of polyurethane foam in aerobic moving and fixed bed bioreactors. Bioresource Technology 101(5), 1435-1439. https://doi.org/10.1016/j.biortech.2009.05.062.
    Gustavsson, D.J.I., Suarez, C., Wilen, B.M., Hermansson, M., Persson, F., 2020. Long-term stability of partial nitritation-anammox for treatment of municipal wastewater in a moving bed biofilm reactor pilot system. Science of The Total Environment 714, 136342. https://doi.org/10.1016/j.scitotenv.2019.136342.
    Hao, X., Heijnen, J.J., Van Loosdrecht, M.C., 2002. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnology and Bioengineering 77(3), 266-277. https://doi.org/10.1002/bit.10105.
    Hu, B.L., Liu, S., Wang, W., Shen, L.D., Lou, L.P., Liu, W.P., Tian, G.M., Xu, X.Y., 2014. pH-dominated niche segregation of ammonia-oxidizing microorganisms in Chinese agricultural soils. FEMS Microbiology Ecology 90(1), 290-299. https://doi.org/10.1111/1574-6941.12391.
    Hu, H.W., Macdonald, C.A., Trivedi, P., Holmes, B., Bodrossy, L., He, J.Z., Singh, B.K., 2015. Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry subhumid ecosystems. Environmental Microbiology 17(2), 444-461. https://doi.org/10.1111/1462-2920.12481.
    Itoi, S., Ebihara, N., Washio, S., Sugita, H., 2007. Nitrite-oxidizing bacteria, Nitrospira, distribution in the outer layer of the biofilm from filter materials of a recirculating water system for the goldfish Carassius auratus. Aquaculture 264, 297-308. https://doi.org/10.1016/j.aquaculture.2007.01.007.
    Jetten, M.S.M., Horn, S.J., Loosdrecht, M.C.M.V., 1997. Towards a more sustainable municipal wastewater treatment system. Water Science and Technology 35(9), 171-180. https://doi.org/10.1016/S0273-1223(97)00195-9.
    Jia, F.X., Peng, Y.Z., Yang, Q., 2014. Competition and synergism between anammox bacteria and other bacteria. Acta Scientiae Circumstantiae 34(6), 1351-1361 (in Chinese). https://doi.org/10.13671/j.hjkxxb.2014.0206.
    Jimenez, J.A., Regmi, P., 2015. Shortcut Nitrogen Removal-Nitrite Shunt and Deammonification. Water Environment Federation, Alexandria.
    Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.H., Wagner, M., 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64(8), 3042-3051.
    Kumar, M., Ou, Y.L., Lin, J.G., 2010. Co-composting of green waste and food waste at low C/N ratio. Waste Management 30(4), 602-609. https://doi.org/10.1016/j.wasman.2009.11.023.
    Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horna, H., van Loosdrechtd, M.C.M., 2014. Full-scale partial nitritation/anammox experiences: An application survey. Water Research 55, 292-303. https://doi.org/10.1016/j.watres.2014.02.032.
    Li, D., Guo, Y.Z., Lao, H.M., Cao, M.Z., Zhang, J., 2018. Comparison of nitrogen removal performances based on partial nitrification at different frequencies of alternating aerobic/anoxic. Journal of Harbin Institute of Technology 51(8), 8-13 (in Chinese). https://doi.org/10.11918/j.issn.0367-6234.201805016.
    Li, J., Chen, C., Ping, W.K., 2009. MBBR technical solution and its application. China Water and Wastewater 25(20), 63-66 (in Chinese).
    Li, J., Li, X.Y., Zhang, Q., Peng, Y.Z., 2019. In-situ restoring domestic wastewater partial nitritation/anammox (PN/A) process by addition of hydroxylamine. China Environmental Science 39(7), 2789-2795 (in Chinese). https://doi.org/10.19674/j.cnki.issn1000-6923.2019.0329.
    Liang, H.B., 2019. Bacterial Diversity in Biological Tannery Wastewater Treatment Process and Bioaugmented Nitrogen Removal. Ph.D. Dissertation. South China University of Technology, Guangzhou (in Chinese).
    Ma, B., Peng, B., Yan, W., Zhu, G.B., Peng, Y.Z., 2015a. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen. Scientific Reports 5, 13048. https://doi.org/10.1038/srep13048.
    Ma, J.X., Wang, Z.W., He, D., Li, Y.X., Wu, Z.C., 2015b. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment. Water Research 78, 98-110. https://doi.org/10.1016/j.watres.2015.03.033.
    Mao, H.Y., Xie, L., Lu, X., Yin, Z., Jakub, D., 2020. Characteristics of anaerobic ammonium oxidation initiated by anaerobic granular sludge. Environmental Engineering 38(1), 93-104 (in Chinese). https://doi.org/10.13205/j.hjgc.202001014.
    Miao, Y.Y., Zhang, L., Yang, Y.D., Peng, Y.Z., Li, B.K., Wang, S.Y., Zhang, Q., 2016. Start-up of single-stage partial nitrification-anammox process treating low-strength swage and its restoration from nitrate accumulation. Bioresource Technology 218(1), 771-779. https://doi.org/10.1016/j.biortech.2016.06.125.
    Quan, Z.X., Rhee, S.K., Zuo, J.E., Yang, Y., Bae, J.W., Park, J.R., Lee, S.T., Park, Y.H., 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environmental Microbiology 10(11), 3130-3139. https://doi.org/10.1111/j.1462-2920.2008.01642.x.
    Schramm, A., de Beer, D., Wagner, M., Amann, R., 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64(9), 3480-3485. https://doi.org/10.1080/08941930490471948.
    Sliekers, A.O., Haaijer, S., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M., 2005. Competition and coexistence of aerobic ammonium and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology Biotechnology 68(6), 808-817. https://doi.org/10.1007/s00253-005-1974-6.
    Star, W., Miclea, A., Dongen, U, Muyzer, G., Picioreanu, C., Loosdrecht, M., 2010. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering 101(2), 286-294. https://doi.org/10.1002/bit.21891.
    Strous, M., Fuerst, J.A., Kramer, E., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M., 1999. Missing lithotroph identified as new planctomycete. Nature 400, 446-449. https://doi.org/10.1038/22749.
    Tallec, G., Garnier, J., Billen, G., Gousailles, M., 2008. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresource Technology 99(7), 2200-2209. https://doi.org/10.1016/j.biortech.2007.05.025.
    Wang, S.Y., Wang, Y., Feng, X.J., Zhai, L.M., Zhu, G.B., 2011. Quantitative analyses of ammonia-oxidizing archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Applied Microbiology and Biotechnology 90(2), 779-787. https://doi.org/10.1007/s00253-011-3090-0.
    Wang, W., Wang, Y., Wang, X., Zhang, Y., Yan, Y., 2019. Dissolved oxygen microelectrode measurements to develop a more sophisticated intermittent aeration regime control strategy for biofilm-based CANON systems. Chemical Engineering Journal 365, 165-174. https://doi.org/10.1016/j.cej.2019.02.033.
    Wett, B., 2007. Development and implementation of a robust deammonification process. Water Science Technology 56(7), 81-88. https://doi.org/10.2166/wst.2007.611.
    Xu, Z.Z., Zhang, L., Gao, X.J., Peng, Y.Z., 2020. Optimization of the intermittent aeration to improve the stability and flexibility of a mainstream hybrid partial nitrification-anammox system. Chemosphere 261, 127670. https://doi.org/10.1016/j.chemosphere.2020.127670.
    Yan, F., Yuan, L.J., Wang, Y., Zhao, J.Q., 2017. Effect of stop feeding and resupplying of nitrite on nitrogen removal in an anammox-UASB. Acta Scientiae Circumstantiae 37(12), 4602-4609 (in Chinese). https://doi.org/10.13671/j.hjkxxb.2017.0215.
    Zekker, I., Rikmann, E., Kroon, K., Mandel, A., Mihkelson, J., Tenno, T., 2017. Ameliorating nitrite inhibition in a low-temperature nitritation-anammox MBBR using bacterial intermediate nitric oxide. International Journal of Environmental Science and Technology 14, 2343-2356. https://doi.org/10.1007/s13762-017-1321-3.
    Zhang, L.M., Hu, H.W., Shen, J.P., He, J.Z., 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME Journal 6(5), 1032-1045. https://doi.org/10.1038/ismej.2011.168.
    Zhao, J., Wang, Q.J., Bai, Y.H., Qi, W.X., Liu, H.J., Qu, J.H., 2020. Ammonium nitrogen removal and effects of its concentration on bacteria and ammonia-oxidizing microorganisms during riverbank filtration. Acta Scientiae Circumstantiae 40(11), 3821-3829 (in Chinese). https://doi.org/10.13671/j.hjkxxb.2020.0140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (11) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return