Volume 17 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
Xiu-juan Feng, Xiao-yi Wang, Dong-ming Li, Zhi-han Liu, Yue-long Yan. 2024: Sulfidation of nano zero-valent iron for enhanced hexavalent chromium removal performance. Water Science and Engineering, 17(3): 249-256. doi: 10.1016/j.wse.2023.12.001
Citation: Xiu-juan Feng, Xiao-yi Wang, Dong-ming Li, Zhi-han Liu, Yue-long Yan. 2024: Sulfidation of nano zero-valent iron for enhanced hexavalent chromium removal performance. Water Science and Engineering, 17(3): 249-256. doi: 10.1016/j.wse.2023.12.001

Sulfidation of nano zero-valent iron for enhanced hexavalent chromium removal performance

doi: 10.1016/j.wse.2023.12.001
Funds:

This work was supported by the National Key Research and Development Program of China (Grants No. 2018YFC1801800, 2019YFC1805600, 2021YFC2902701, and 2021YFC2902100), the Shandong Provincial Major Science and Technology Innovation Project (Grant No. 2021CXGC011206), and the Key Project of the National Natural Science Foundation of China (Grant No. 52130402).

  • Received Date: 2022-10-29
  • Accepted Date: 2023-11-14
  • Available Online: 2024-08-24
  • Nano zero-valent iron (nZVI) and sulfidation-modified nZVI (S-nZVI) were synthesized and used to remove hexavalent chromium (Cr(VI)) in wastewater. Characterization of the products showed that the sulfidation process significantly changed the morphology of nZVI, with enhanced crystallinity. The effects of S/Fe ratio, pH value, and reaction temperature on Cr(VI) removal were studied. A S/Fe ratio of 0.5 was the most appropriate parameter, with a removal efficiency of 98% in the condition of pH = 2. The effects of anions (Cl-, NO3-, CO32-, and SO42-) and cations (Ca2+ and Mg2+) on the Cr(VI) removal efficiency were investigated, and the relevant mechanisms were discussed. The Cr(VI) removal efficiency of S-nZVI was significantly greater than that of nZVI, mainly owing to the existence of FeS layers that could protect Fe0 cores and prompt electron transfer. The aging and cycling experiments showed that S-nZVI could maintain its reactivity when facing the corrosion of water, and showed cycling stability. Thus, S-nZVI is an effective and feasible agent for the remediation of Cr(VI)-contained wastewater.

     

  • loading
  • Bandara, P.C., Pena-Bahamonde, J., Rodrigues, D.F., 2020. Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite. Sci. Rep. 10(1), 9237. https://doi.org/10.1038/s41598-020-65534-8.
    Cao, Z., Li, H., Xu, X., Xu, J., 2020a. Correlating surface chemistry and hydrophobicity of sulfidized nanoscale zerovalent iron with its reactivity and selectivity for denitration and dechlorination. Chemical Engineering Journal 394, 124876. https://doi.org/10.1016/j.cej.2020.124876.
    Cao, Z., Xu, J., Li, H., Ma, T., Lou, L., Henkelman, G., Xu, X., 2020b. Dechlorination and defluorination capability of sulfidized nanoscale zerovalent iron with suppressed water reactivity. Chemical Engineering Journal 400, 125900. https://doi.org/10.1016/j.cej.2020.125900.
    Cao, Z., Li, H., Lowry, G.V., Shi, X., Pan, X., Xu, X., Henkelman, G., Xu, J., 2021a. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environmental Science and Technology 55(4), 2628-2638. https://doi.org/10.1021/acs.est.0c07319.
    Cao, Z., Li, H., Zhang, S., Hu, Y., Xu, J., Xu, X., 2021b. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environmental Science: Nano 8(9), 2607-2617. https://doi.org/10.1039/D1EN00364J.
    Dong, H., Zhang, C., Deng, J., Jiang, Z., Zhang, L., Cheng, Y., Hou, K., Tang, L., Zeng, G., 2018. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Research 135, 1-10. https://doi.org/10.1016/j.watres.2018.02.017.
    Dong, Y., Xing, W., Luo, K., Zhang, J., Yu, J., Jin, W., Wang, J., Tang, W., 2021. Effective and continuous removal of Cr(VI) from brackish wastewater by flow-electrode capacitive deionization (FCDI). Journal of Cleaner Production 326, 129417. https://doi.org/10.1016/j.jclepro.2021.129417.
    Herath, H.M.A.S., Kawakami, T., Nagasawa, S., Serikawa, Y., Motoyama, A., Chaminda, G.G.T., Weragoda, S.K., Yatigammana, S.K., Amarasooriya, A., 2018. Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. Journal of Water and Health 16(2), 212-222. https://doi.org/10.2166/wh.2018.070.
    Jiang, Q., Jiang, S., Li, H., Zhang, R., Jiang, Z., Zhang, Y., 2022. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chemical Engineering Journal 431, 133937. https://doi.org/10.1016/j.cej.2021.133937.
    Jiang, W., Cai, Q., Xu, W., Yang, M., Cai, Y., Dionysiou, D.D., O'Shea, K.E., 2014. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science and Technology 48(14), 8078-8085. https://doi.org/10.1021/es405804m.
    Jin, W., Du, H., Zheng, S., Zhang, Y., 2016. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta 191, 1044-1055. https://doi.org/10.1016/j.electacta.2016.01.130.
    Li, J., Zhang, X., Sun, Y., Liang, L., Pan, B., Zhang, W., Guan, X., 2017. Advances in sulfidation of zerovalent iron for water decontamination. Environmental Science and Technology 51(23), 13533-13544. https://doi.org/10.1021/acs.est.7b02695.
    Liu, A., Liu, J., Han, J., Zhang, W., 2017. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. Journal of Hazardous Materials 322, 129-135. https://doi.org/10.1016/j.jhazmat.2015.12.070.
    Lv, D., Zhou, J., Cao, Z., Xu, J., Liu, Y., Li, Y., Yang, K., Lou, Z., Lou, L., Xu, X., 2019. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 224, 306-315. https://doi.org/10.1016/j.chemosphere.2019.02.109.
    Lv, Z., Tan, X., Wang, C., Alsaedi, A., Hayat, T., Chen, C., 2020. Metal-organic frameworks-derived 3D yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction. Chemical Engineering Journal 389, 123428. https://doi.org/10.1016/j.cej.2019.123428.
    Miretzky, P., Cirelli, A.F., 2010. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials 180(1-3), 1-19. https://doi.org/10.1016/j.jhazmat.2010.04.060.
    Mpouras, T., Polydera, A., Dermatas, D., Verdone, N., Vilardi, G., 2021. Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments. Chemosphere 269, 128749. https://doi.org/10.1016/j.chemosphere.2020.128749.
    Qin, H., Hu, T., Zhai, Y., Lu, N., Aliyeva, J., 2020. The improved methods of heavy metals removal by biosorbents: A review. Environmental Pollution 258, 113777. https://doi.org/10.1016/j.envpol.2019.113777.
    Qu, M., Chen, H., Wang, Y., Wang, X., Tong, X., Li, S., Xu, H., 2021. Improved performance and applicability of copper-iron bimetal by sulfidation for Cr(VI) removal. Chemosphere 281, 130820. https://doi.org/10.1016/j.chemosphere.2021.130820.
    Tanboonchuy, V., Grisdanurak, N., Liao, C.-H., 2012. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials 205-206, 40-46. https://doi.org/10.1016/j.jhazmat.2011.11.090.
    Vilardi, G., Sebastiani, D., Miliziano, S., Verdone, N., Di Palma, L., 2018. Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products. Chemical Engineering Journal 335, 309-320. https://doi.org/10.1016/j.cej.2017.10.152.
    Vilardi, G., 2020. P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor: Kinetic modelling and scale-up. Chemosphere 250, 126237. https://doi.org/10.1016/j.chemosphere.2020.126237.
    Wang, X., Zhang, D., Xiang, Q., Zhong, Z., Liao, Y., 2018. Review of water-assisted crystallization for TiO2 nanotubes. Nano-Micro Letters 10(4), 77. https://doi.org/10.1007/s40820-018-0230-4.
    Wang, X., Liao, Y., Xiang, Q., Zhang, H., Li, Y., Zhong, Z., 2019. Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous fenton-like reactions under neutral conditions. Inorganic Chemistry 58(8), 4718-4721. https://doi.org/10.1021/acs.inorgchem.9b00546.
    Xu, J., Cao, Z., Zhou, H., Lou, Z., Wang, Y., Xu, X., Lowry, G.V., 2019a. Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron. Environmental Science and Technology 53(22), 13344-13352. https://doi.org/10.1021/acs.est.9b04210.
    Xu, J., Wang, Y., Weng, C., Bai, W., Jiao, Y., Kaegi, R., Lowry, G. V., 2019b. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environmental Science and Technology 53(10), 5936-5945. https://doi.org/10.1021/acs.est.9b00511.
    Xu, J., Avellan, A., Li, H., Clark, E.A., Henkelman, G., Kaegi, R., Lowry, G.V., 2020a. Iron and sulfur precursors affect crystalline structure, speciation, and reactivity of sulfidized nanoscale zerovalent Iron. Environmental Science and Technology 54(20), 13294-13303. https://doi.org/10.1021/acs.est.0c03879.
    Xu, J., Avellan, A., Li, H., Liu, X., Noel, V., Lou, Z., Wang, Y., Kaegi, R., Henkelman, G., Lowry, G.V., 2020b. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Advanced Materials 32(17), 1906910. https://doi.org/10.1002/adma.201906910.
    Xu, J., Li, H., Lowry, G.V., 2021. Sulfidized nanoscale zero-valent iron: Tuning the properties of this complex material for efficient groundwater remediation. Accounts of Materials Research 2(6), 420-431. https://doi.org/10.1021/accountsmr.1c00037.
    Zhang, S., Wu, M., Tang, T., Xing, Q., Peng, C., Li, F., Liu, H., Luo, X., Zou, J., Min, X., et al., 2018. Mechanism investigation of anoxic Cr(VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chemical Engineering Journal 335, 945-953. https://doi.org/10.1016/j.cej.2017.10.182.
    Zhao, Y., Zhao, D., Chen, C., Wang, X., 2013. Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. Journal of Colloid and Interface Science 405, 211-217. https://doi.org/10.1016/j.jcis.2013.05.004.
    Zheng, C., Yang, Z., Si, M., Zhu, F., Yang, W., Zhao, F., Shi, Y., 2021. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. Journal of Hazardous Materials 407, 124376. https://doi.org/10.1016/j.jhazmat.2020.124376.
    Zhu, F., He, S., Liu, T., 2018. Effect of pH, temperature and co-existing anions on the removal of Cr(VI) in groundwater by green synthesized nZVI/Ni. Ecotoxicology and Environmental Safety 163, 544-550. https://doi.org/10.1016/j.ecoenv.2018.07.082.
    Zhu, K., Chen, L., Alharbi, N.S., Chen, C., 2022. Interconnected hierarchical nickel-carbon hybrids assembled by porous nanosheets for Cr(VI) reduction with formic acid. Journal of Colloid and Interface Science 606, 213-222. https://doi.org/10.1016/j.jcis.2021.08.024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (27) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return