Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Shan-shan Gao, Xing Yin, Rui Huang, Jia-yu Tian. 2024: Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane. Water Science and Engineering, 17(4): 352-360. doi: 10.1016/j.wse.2024.01.001
Citation: Shan-shan Gao, Xing Yin, Rui Huang, Jia-yu Tian. 2024: Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane. Water Science and Engineering, 17(4): 352-360. doi: 10.1016/j.wse.2024.01.001

Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane

doi: 10.1016/j.wse.2024.01.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.51978232),the Natural Science Foundation of Tianjin City (Grant No.19JCJQJC63000),the Natural Science Foundation of Hebei Province (Grant No.E2019202012),and the Science and Technology Project of Hebei Education Department of China (Grant No.QN2019022).

  • Received Date: 2022-11-20
  • Accepted Date: 2023-11-28
  • Available Online: 2024-11-30
  • Simultaneous nitrification and denitrification (SND) is an efficient method to remove nitrogen in municipal wastewater treatment. However, low dissolved oxygen (DO) concentrations are generally required, leading to serious membrane fouling in membrane bioreactors (MBRs). This study aimed to clarify the synergistic effect of biomass and DO on nitrogen removal and membrane fouling. To achieve this goal, four submerged MBRs equipped with ceramic membranes were operated with different biomass (mixed liquor suspended solids (MLSS)) concentrations (3 000 mg/L, 5 000 mg/L, 7 500 mg/L, and 12 000 mg/L) under various DO concentrations (2.0 mg/L, 1.0 mg/L, and 0.5 mg/L). As a result, increasing biomass in the MBRs enhanced total nitrogen (TN) removal via SND, and excellent TN removal efficiencies of 60.7% and 75.8% were obtained using the MBR with an MLSS concentration of 12 000 mg/L and DO concentrations of 2.0 mg/L and 1.0 mg/L. However, a further decrease in DO deteriorated TN removal due to the inhibition of nitrification. Moreover, high MLSS concentrations were beneficial to membrane fouling control for ceramic membranes in MBRs. The lowest transmembrane pressure development rate was observed for the MBR with an MLSS concentration of 12 000 mg/L. High biomass offset the adverse effect of DO decrease on membrane fouling to some extent, and improved the stability of the reactor. Therefore, biomass might be an important parameter for membrane fouling reduction in ceramic MBRs. Overall, optimal biomass and DO concentrations for TN removal were identified, providing useful information for the successful operation of MBRs with efficient TN removal and membrane fouling control.

     

  • loading
  • Blackburne, R., Yuan, Z., Keller, J., 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2), 303-312. https://doi.org/10.1007/s10532-007-9136-4.
    Cai, W., Liu, Y., 2018. Oxidative stress induced membrane biofouling and its implications to on-line chemical cleaning in MBR. Chem. Eng. J. 334, 1917-1926. https://doi.org/10.1016/j.cej.2017.11.152.
    Chen, F., Bi, X., Ng, H.Y., 2016a. Effects of bio-carriers on membrane fouling mitigation in moving bed membrane bioreactor. J. Membr. Sci. 499, 134-142. https://doi.org/10.1016/j.memsci.2015.10.052.
    Chen, J., Zhang, M., Li, F., Qian, L., Lin, H., Yang, L., Wu, X., Zhou, X., He, Y., Liao, B.Q., 2016b. Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. Water Res. 102, 82-89. https://doi.org/10.1016/j.watres.2016.06.028.
    Chung, J., Bae, W., Lee, Y.W., Rittmann, B.E., 2007. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem. 42(3), 320-328. https://doi.org/10.1016/j.procbio.2006.09.002.
    De Temmerman, L.D., Maere, T., Temmink, H., Zwijnenburg, A., Nopens, I., 2015. The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling. Water Res. 76, 99-109. https://doi.org/10.1016/j.watres.2015.02.057.
    Gui, L., Peng, Y., Gan, G., Peng, Z., Hou, H., Wang, G., Shi, H., 2011. Activated sludge bulking initiated by cooperation of low DO and sludge loads. CIE J. 62(7), 2042-2048 (in Chinese). https://doi.org/10.3969/j.issn.0438-1157.2011.07.038.
    Guisasola, A., Jubany, I., Baeza, J., Carrera, J., Lafuente, F., 2005. Respirometric estimation of the oxygen affinity constants for biological ammonia and nitrite oxidation. J. Chem. Technol. Biot. 80(4), 388-396. https://doi.org/10.1002/jctb.1202.
    Hamid, I.A.K., Sanciolo, P., Gray, S., Duke, M., Muthukumaran, S., 2017. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling. Water Res. 126, 308-318. https://doi.org/10.1016/j.watres.2017.09.012.
    Jimenez, J., Wise, G., Regmi, P., Burger, G., Conidi, D., Du, W., Dold, P., 2020. Nitrite-shunt and biological phosphorus removal at low dissolved oxygen in a full-scale high-rate system at warm temperatures. Water Environ. Res. 92(8), 1111-1122. https://doi.org/10.1002/wer.1304.
    Jorgensen, M.K., Nierychlo, M., Nielsen, A.H., Larsen, P., Christensen, M.L., Nielsen, P.H., 2017. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Res. 120, 117-132. https://doi.org/10.1016/j.watres.2017.04.056.
    Kimura, K., Uchida, H., 2019. Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res. 150, 21-28. https://doi.org/10.1016/j.watres.2018.11.030.
    Law, Y.Y., Matysik, A., Chen, X.M., Thi, S.S., Nguyen, T.Q.N., Qiu, G.L., Natarajan, G., Williams, R.B.H., Ni, B.J., Seviour, T.W., Wuertz, S., 2019. High dissolved oxygen selection against Nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53(14), 8157-8166. https://doi.org/10.1021/acs.est.9b00955.
    Lee, S.J., Dilaver, M., Park, P.K., Kim, J.H., 2013. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 432, 97-105. https://doi.org/10.1016/j.memsci.2013.01.013.
    Li, X.Y., Yang, S.F., 2007. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41(5), 1022-1030. https://doi.org/10.1016/j.watres.2006.06.037.
    Lurling, M., Mackay, E., Reitzel, K., Spears, B.M., 2016. Editorial - a critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97, 1-10. https://doi.org/10.1016/j.watres.2016.03.035.
    Lv, Y., Pan, J., Huo, T., Zhao, Y., Liu, S., 2019. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Res. 163, 114872. https://doi.org/10.1016/j.watres.2019.114872.
    Meng, F., Yang, F., 2007. Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor. J. Membr. Sci. 305(1), 48-56. https://doi.org/10.1016/j.memsci.2007.07.038.
    Meng, F.G., Zhang, S.Q., Oh, Y., Zhou, Z.B., Shin, H.S., Chae, S.R., 2017. Fouling in membrane bioreactors: An updated review. Water Res. 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006.
    Meng, Q., Yang, F., Liu, L., Meng, F., 2008. Effects of COD/N ratio and DO concentration on simultaneous nitrification and denitrification in an airlift internal circulation membrane bioreactor. J. Environ. Sci. 20, 933-939. https://doi.org/10.1016/S1001-0742(08)62189-0.
    Ninomiya, Y., Kimura, K., Sato, T., Kakuda, T., Kaneda, M., Hafuka, A., Tsuchiya, T., 2020. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: Tests with real domestic wastewater under low-temperature conditions. Water Res. 181, 115881. https://doi.org/10.1016/j.watres.2020.115881.
    Osnes, T., Sandstad, O., Skar, V., Osnes, M., Kierulf, P., 1993. Total protein in common duct bile measured by acetonitrile precipitation and a micro bicinchoninic acid (BCA) method. Scand. J. Clin. Lab. Invest. 53(7), 757-763. https://doi.org/10.3109/00365519309092582.
    Ramesh, A., Lee, D.J., Wang, M.L., Hsu, J.P., Juang, R.S., Hwang, K.J., Liu, J.C., Tseng, S.J., 2006. Biofouling in membrane bioreactor. Separ. Sci. Technol. 41(7), 1345-1370. https://doi.org/10.1080/01496390600633782.
    Roots, P., Sabba, F., Rosenthal, A.F., Wang, Y., Yuan, Q., Rieger, L., Yang, F., Kozak, J.A., Zhang, H., Wells, G.F., 2020. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: Process operation and modeling. Environ. Sci. Water Res. 6, 566-580. https://doi.org/10.1039/C9EW00550A.
    Ruiz, G., Jeison, D., Chamy, R., 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37(6), 1371-1377. https://doi.org/10.1016/s0043-1354(02)00475-x.
    SEPA, 2002. Chinese Water and Wastewater Monitoring Methods. Environmental Science Publishing House, Beijing (in China).
    Song, L.J., Zhu, N.W., Yuan, H.P., Hong, Y., Ding, J., 2010. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment. Water Res. 44(15), 4371-4378. https://doi.org/10.1016/j.watres.2010.05.052.
    Subtil, E.L., Silva, M.V., Lotto, B.A., Moretto, M.R.D., Mierzwa, J.C., 2019. Pilot-scale investigation on the feasibility of simultaneous nitrification and denitrification (SND) in a continuous flow single-stage membrane bioreactor. J. Water Proc. Eng. 32, 100995. https://doi.org/10.1016/j.jwpe.2019.100995.
    Sun, J., Liang, P., Yan, X., Zuo, K., Xiao, K., Xia, J., Qiu, Y., Wu, Q., Wu, S., Huang, X., Qi, M., Wen, X., 2016. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Water Res. 93, 205-213. https://doi.org/10.1016/j.watres.2016.02.026.
    Sun, M., Yan, L., Zhang, L., Song, L., Guo, J., Zhang, H., 2019. New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochem. 78, 108-113. https://doi.org/10.1016/j.procbio.2019.01.004.
    Tang, S., Zhang, Z., Zhang, X., 2017. New insight into the effect of mixed liquor properties changed by pre-ozonation on ceramic UF membrane fouling in wastewater treatment. Chem. Eng. J. 314, 670-680. https://doi.org/10.1016/j.cej.2016.12.032.
    Wang, Q., Chen, Q., 2016. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater. J. Environ. Sci. 39, 175-183. https://doi.org/10.1016/j.jes.2015.10.012.
    Wen, J., LeChevallier, M.W., Tao, W., 2020. Nitrification kinetics and microbial communities of activated sludge as a full-scale membrane bioreactor plant transitioned to low dissolved oxygen operation. J. Clean. Prod. 252, 119872. https://doi.org/10.1016/j.jclepro.2019.119872.
    Xiao, K., Liang, S., Wang, X., Chen, C., Huang, X., 2019. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresour. Technol. 271, 473-481. https://doi.org/10.1016/j.biortech.2018.09.061.
    Zhang, S.J., Peng, Y.Z., Wang, S.Y., Zheng, S.W., Guo J., 2007. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate. J. Environ. Sci. 19(6), 647-651. https://doi.org/10.1016/s1001-0742(07)60108-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return