Citation: | Shan-shan Gao, Xing Yin, Rui Huang, Jia-yu Tian. 2024: Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane. Water Science and Engineering, 17(4): 352-360. doi: 10.1016/j.wse.2024.01.001 |
Blackburne, R., Yuan, Z., Keller, J., 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2), 303-312. https://doi.org/10.1007/s10532-007-9136-4.
|
Cai, W., Liu, Y., 2018. Oxidative stress induced membrane biofouling and its implications to on-line chemical cleaning in MBR. Chem. Eng. J. 334, 1917-1926. https://doi.org/10.1016/j.cej.2017.11.152.
|
Chen, F., Bi, X., Ng, H.Y., 2016a. Effects of bio-carriers on membrane fouling mitigation in moving bed membrane bioreactor. J. Membr. Sci. 499, 134-142. https://doi.org/10.1016/j.memsci.2015.10.052.
|
Chen, J., Zhang, M., Li, F., Qian, L., Lin, H., Yang, L., Wu, X., Zhou, X., He, Y., Liao, B.Q., 2016b. Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism. Water Res. 102, 82-89. https://doi.org/10.1016/j.watres.2016.06.028.
|
Chung, J., Bae, W., Lee, Y.W., Rittmann, B.E., 2007. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors. Process Biochem. 42(3), 320-328. https://doi.org/10.1016/j.procbio.2006.09.002.
|
De Temmerman, L.D., Maere, T., Temmink, H., Zwijnenburg, A., Nopens, I., 2015. The effect of fine bubble aeration intensity on membrane bioreactor sludge characteristics and fouling. Water Res. 76, 99-109. https://doi.org/10.1016/j.watres.2015.02.057.
|
Gui, L., Peng, Y., Gan, G., Peng, Z., Hou, H., Wang, G., Shi, H., 2011. Activated sludge bulking initiated by cooperation of low DO and sludge loads. CIE J. 62(7), 2042-2048 (in Chinese). https://doi.org/10.3969/j.issn.0438-1157.2011.07.038.
|
Guisasola, A., Jubany, I., Baeza, J., Carrera, J., Lafuente, F., 2005. Respirometric estimation of the oxygen affinity constants for biological ammonia and nitrite oxidation. J. Chem. Technol. Biot. 80(4), 388-396. https://doi.org/10.1002/jctb.1202.
|
Hamid, I.A.K., Sanciolo, P., Gray, S., Duke, M., Muthukumaran, S., 2017. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling. Water Res. 126, 308-318. https://doi.org/10.1016/j.watres.2017.09.012.
|
Jimenez, J., Wise, G., Regmi, P., Burger, G., Conidi, D., Du, W., Dold, P., 2020. Nitrite-shunt and biological phosphorus removal at low dissolved oxygen in a full-scale high-rate system at warm temperatures. Water Environ. Res. 92(8), 1111-1122. https://doi.org/10.1002/wer.1304.
|
Jorgensen, M.K., Nierychlo, M., Nielsen, A.H., Larsen, P., Christensen, M.L., Nielsen, P.H., 2017. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Res. 120, 117-132. https://doi.org/10.1016/j.watres.2017.04.056.
|
Kimura, K., Uchida, H., 2019. Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res. 150, 21-28. https://doi.org/10.1016/j.watres.2018.11.030.
|
Law, Y.Y., Matysik, A., Chen, X.M., Thi, S.S., Nguyen, T.Q.N., Qiu, G.L., Natarajan, G., Williams, R.B.H., Ni, B.J., Seviour, T.W., Wuertz, S., 2019. High dissolved oxygen selection against Nitrospira sublineage I in full-scale activated sludge. Environ. Sci. Technol. 53(14), 8157-8166. https://doi.org/10.1021/acs.est.9b00955.
|
Lee, S.J., Dilaver, M., Park, P.K., Kim, J.H., 2013. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. J. Membr. Sci. 432, 97-105. https://doi.org/10.1016/j.memsci.2013.01.013.
|
Li, X.Y., Yang, S.F., 2007. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 41(5), 1022-1030. https://doi.org/10.1016/j.watres.2006.06.037.
|
Lurling, M., Mackay, E., Reitzel, K., Spears, B.M., 2016. Editorial - a critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97, 1-10. https://doi.org/10.1016/j.watres.2016.03.035.
|
Lv, Y., Pan, J., Huo, T., Zhao, Y., Liu, S., 2019. Enhanced microbial metabolism in one stage partial nitritation-anammox system treating low strength wastewater by novel composite carrier. Water Res. 163, 114872. https://doi.org/10.1016/j.watres.2019.114872.
|
Meng, F., Yang, F., 2007. Fouling mechanisms of deflocculated sludge, normal sludge, and bulking sludge in membrane bioreactor. J. Membr. Sci. 305(1), 48-56. https://doi.org/10.1016/j.memsci.2007.07.038.
|
Meng, F.G., Zhang, S.Q., Oh, Y., Zhou, Z.B., Shin, H.S., Chae, S.R., 2017. Fouling in membrane bioreactors: An updated review. Water Res. 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006.
|
Meng, Q., Yang, F., Liu, L., Meng, F., 2008. Effects of COD/N ratio and DO concentration on simultaneous nitrification and denitrification in an airlift internal circulation membrane bioreactor. J. Environ. Sci. 20, 933-939. https://doi.org/10.1016/S1001-0742(08)62189-0.
|
Ninomiya, Y., Kimura, K., Sato, T., Kakuda, T., Kaneda, M., Hafuka, A., Tsuchiya, T., 2020. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: Tests with real domestic wastewater under low-temperature conditions. Water Res. 181, 115881. https://doi.org/10.1016/j.watres.2020.115881.
|
Osnes, T., Sandstad, O., Skar, V., Osnes, M., Kierulf, P., 1993. Total protein in common duct bile measured by acetonitrile precipitation and a micro bicinchoninic acid (BCA) method. Scand. J. Clin. Lab. Invest. 53(7), 757-763. https://doi.org/10.3109/00365519309092582.
|
Ramesh, A., Lee, D.J., Wang, M.L., Hsu, J.P., Juang, R.S., Hwang, K.J., Liu, J.C., Tseng, S.J., 2006. Biofouling in membrane bioreactor. Separ. Sci. Technol. 41(7), 1345-1370. https://doi.org/10.1080/01496390600633782.
|
Roots, P., Sabba, F., Rosenthal, A.F., Wang, Y., Yuan, Q., Rieger, L., Yang, F., Kozak, J.A., Zhang, H., Wells, G.F., 2020. Integrated shortcut nitrogen and biological phosphorus removal from mainstream wastewater: Process operation and modeling. Environ. Sci. Water Res. 6, 566-580. https://doi.org/10.1039/C9EW00550A.
|
Ruiz, G., Jeison, D., Chamy, R., 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 37(6), 1371-1377. https://doi.org/10.1016/s0043-1354(02)00475-x.
|
SEPA, 2002. Chinese Water and Wastewater Monitoring Methods. Environmental Science Publishing House, Beijing (in China).
|
Song, L.J., Zhu, N.W., Yuan, H.P., Hong, Y., Ding, J., 2010. Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment. Water Res. 44(15), 4371-4378. https://doi.org/10.1016/j.watres.2010.05.052.
|
Subtil, E.L., Silva, M.V., Lotto, B.A., Moretto, M.R.D., Mierzwa, J.C., 2019. Pilot-scale investigation on the feasibility of simultaneous nitrification and denitrification (SND) in a continuous flow single-stage membrane bioreactor. J. Water Proc. Eng. 32, 100995. https://doi.org/10.1016/j.jwpe.2019.100995.
|
Sun, J., Liang, P., Yan, X., Zuo, K., Xiao, K., Xia, J., Qiu, Y., Wu, Q., Wu, S., Huang, X., Qi, M., Wen, X., 2016. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Water Res. 93, 205-213. https://doi.org/10.1016/j.watres.2016.02.026.
|
Sun, M., Yan, L., Zhang, L., Song, L., Guo, J., Zhang, H., 2019. New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochem. 78, 108-113. https://doi.org/10.1016/j.procbio.2019.01.004.
|
Tang, S., Zhang, Z., Zhang, X., 2017. New insight into the effect of mixed liquor properties changed by pre-ozonation on ceramic UF membrane fouling in wastewater treatment. Chem. Eng. J. 314, 670-680. https://doi.org/10.1016/j.cej.2016.12.032.
|
Wang, Q., Chen, Q., 2016. Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic-oxic process without internal recycle treating low strength wastewater. J. Environ. Sci. 39, 175-183. https://doi.org/10.1016/j.jes.2015.10.012.
|
Wen, J., LeChevallier, M.W., Tao, W., 2020. Nitrification kinetics and microbial communities of activated sludge as a full-scale membrane bioreactor plant transitioned to low dissolved oxygen operation. J. Clean. Prod. 252, 119872. https://doi.org/10.1016/j.jclepro.2019.119872.
|
Xiao, K., Liang, S., Wang, X., Chen, C., Huang, X., 2019. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresour. Technol. 271, 473-481. https://doi.org/10.1016/j.biortech.2018.09.061.
|
Zhang, S.J., Peng, Y.Z., Wang, S.Y., Zheng, S.W., Guo J., 2007. Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate. J. Environ. Sci. 19(6), 647-651. https://doi.org/10.1016/s1001-0742(07)60108-9.
|