Citation: | Xue-yong Wang, Jing-yu Fan. 2024: Impact of geometric features of impermeable discrete bedform on hyporheic exchange. Water Science and Engineering, 17(4): 388-396. doi: 10.1016/j.wse.2024.01.003 |
Behzadi, F., Wallace, C.D., Ward, D., Zhou, H.Y., Versteeg, R., Soltanian, M.R., 2021. Bed form-induced hyporheic exchange and geochemical hotspots. Advances in Water Resources 156, 104025. https://doi.org/10.1016/j.advwatres.2021.104025.
|
Betterle, A., Jaeger, A., Posselt, M., Coll, C., Benskin, J.P., Schirmer, M., 2021. Hyporheic exchange in recirculating flumes under heterogeneous bacterial and morphological conditions. Environmental Earth Sciences 80(6), 1-18. https://doi.org/10.1007/s12665-021-09472-2.
|
Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., Worman, A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52(4), 603-679. https://doi.org/10.1002/2012RG000417.
|
Chen, X.B., Zhao, J., Li, Y.Y., Chen, L., 2014. Experimental study of bedform-driven hyporheic exchange. Advances in Water Science 25(6), 835-841 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2014.06.010.
|
Chen, X.B., Cardenas, M.B., Chen, L., 2015. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resources Research 51(4), 2923-2936. https://doi.org/10.1002/2014WR016848.
|
Cook, S., Price, O., King, A., Finnegan, C., Egmond, R., Schafer, H., Pearson, J.M., Abolfathi, S., Bending, G.D., 2020. Bedform characteristics and biofilm community development interact to modify hyporheic exchange. Science of The Total Environment 749(18), 141397. https://doi.org/10.1016/j.scitotenv.2020.141397.
|
Fan, J.Y., Chen, C.Y., Zhao, L., Wang, D.F., Wang, D.Z., 2020. Impact of bed roughness and sediment permeability on mass exchange across sediment-water interface. Advances in Water Science 31(2), 232-239 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2020.02.009.
|
Feng, J.H., Liu, D.F., Liu, Y., Li, Y., Li, H., Chen, L.H., Xiao, J.W., Liu, J.X., Dong, J.W., 2022. Hyporheic exchange due to in-stream geomorphic structures. Journal of Freshwater Ecology 37(1), 221-241. https://doi.org/10.1080/02705060.2022.2034673.
|
Grant, S.B., Stewardson, M.J., Marusic, I., 2012. Effective diffusivity and mass flux across the sediment-water interface in streams. Water Resources Research 48(5), W05548. https://doi.org/10.1029/2011WR011148.
|
Hester, E.T., Doyle, M.W., 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research 44(3), W03417. https://doi.org/10.1029/2006WR005810.
|
Jin, G.Q., Li, L., 2008. Advancement in the hyporheic exchange in rivers. Advances in Water Science 19(2), 285-293 (in Chinese).
|
Jin, G.Q., Tang, H.W., Gibbes, B., Li, L., Barry, D.A., 2010. Transport of nonsorbing solutes in a streambed with periodic bedforms. Advances in Water Resources 33(11), 1402-1416. https://doi.org/10.1016/j.advwatres.2010.09.003.
|
Jin, G.Q, Chen, H.X., Zhang, Z.T., Jiang, Q.H., Liu, Z.Y., Tang, H.W., 2022a. Transport of phosphorus in the hyporheic zone. Water Resources Research. 58(3), e2021WR031292. https://doi.org/10.1029/2021WR031292.
|
Jin, G.Q., Yuan, H.Y., Zhang, G.M., Zhang, Z.T., Chen, C., Tang, H.W., Li, L., 2022b. Effects of bed geometric characteristics on hyporheic exchange. Journal of Hydro-Environment Research 43, 1-9. https://doi.org/10.1016/j.jher.2022.05.001.
|
Jin, G.Q., Zhang, S.Y., Zhou, B., Yang, Y.H., Zhang, Z.T., Chen, H.X., Tang, H.W., 2023. Solute transport characteristics in the streambed due to rigid non-submerged plants: Experiment and simulations. Journal of Hydrology 619, 129315. https://doi.org/10.1016/j.jhydrol.2023.129315.
|
Krause, S., Klaar, M.J., Hannah, D.M., Mant, J., Bridgeman, J., Trimmer, M., Manning-Jones, S., 2014. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. Wiley Interdisciplinary Reviews: Water 1(3), 263-275. https://doi.org/10.1002/wat2.1019.
|
Lee, A., Aubeneau, A.F., Cardenas, M.B., Liu, X.F., 2022. Hyporheic exchange due to cobbles on sandy beds. Water Resources Research 58(1), e2021WR030164. https://doi.org/10.1029/2021WR030164.
|
Lewandowski, J., Arnon, S., Banks, E., Batelaan, O., Betterle, A., Broecker, T., Coll, C., Drummond, J.D., Garcia, J.G., Galloway, J. et al., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11(11), 2230. https://doi.org/10.3390/w11112230.
|
Liu, H., Liu, Y., Feng, J.H., Liu, D.F., Li, Y., Chen, L.H., Xiao, J.W., 2022. Influence of the in-stream structure on solute transport in the hyporheic zone. International Journal of Environmental Research and Public Health 19(10), 5856. https://doi.org/10.3390/ijerph19105856.
|
Liu, M.Y., Huai, W.X., Chen, B., 2021. Predicting the effective diffusivity across the sediment-water interface in rivers. Journal of Cleaner Production 292, 126085. https://doi.org/10.1016/j.jclepro.2021.126085.
|
Marion, A., Bellinello, M., Guymer, I., Packman, A., 2002. Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research 38(10), 1209. https://doi.org/10.1029/2001WR000264.
|
Mutz, M., Kalbus, E., Meineke, S., 2007. Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resources Research 43(10), W10424. https://doi.org/10.1029/2006WR005676.
|
O'Connor, B.L., Harvey, J.W., 2008. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems. Water Resources Research 44(12), 681-687. https://doi.org/10.1029/2008WR007160.
|
Packman, A.I., Salehin, M., Zaramella, M., 2004. Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering 130(7), 647-656. https://doi.org/10.1061/(ASCE)0733-9429 (2004)130:7(647).
|
Pryshlak, T.T., Sawyer, A.H., Stonedahl, S.H., Soltanian, M.R., 2015. Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resources Research 51(11), 9127-9140. https://doi.org/10.1002/2015WR017293.
|
Ren, J., Zhao, B., 2020. Model-based analysis of the effects of rippled bed morphologies on hyporheic exchange. Journal of Hydrologic Engineering 25(6), 04020023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001931.
|
Sawyer, A.H., Cardenas, M.B., Buttles, J., 2011. Hyporheic exchange due to channel-spanning logs. Water Resources Research 47(8), 427-438. https://doi.org/10.1029/2011WR010484.
|
Sawyer, A.H., Cardenas, M.B., Buttles, J., 2012. Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resources Research 48(1), W01529. https://doi.org/10.1029/2011WR011200.
|
Wondzell, S.M., LaNier, J., Haggerty, R., Woodsmith, R.D., Edwards, R.T., 2009. Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream. Water Resources Research 45(5), W05406. https://doi.org/10.1029/2008WR007214.
|
Xu, J.J., Jing, H., 2022. Research progress of river ecological restoration concept and technology. Research of Agricultural Modernization 43(4), 691-701 (in Chinese).
|
Yuan, X.Z., Luo, G.Y., 2003. A brief review for ecological studies on hyporheic zone of stream ecosystem. Acta Ecologica Sinica 23(5), 956-964 (in Chinese).
|
Zhang, H., Zou, Z.L., Xu, J., 2018. Study on the nonlinear evolution of sand dunes and antidunes. Coastal Engineering 37(2), 61-72 (in Chinese).
|