Volume 17 Issue 4
Nov.  2024
Turn off MathJax
Article Contents
Xue-yong Wang, Jing-yu Fan. 2024: Impact of geometric features of impermeable discrete bedform on hyporheic exchange. Water Science and Engineering, 17(4): 388-396. doi: 10.1016/j.wse.2024.01.003
Citation: Xue-yong Wang, Jing-yu Fan. 2024: Impact of geometric features of impermeable discrete bedform on hyporheic exchange. Water Science and Engineering, 17(4): 388-396. doi: 10.1016/j.wse.2024.01.003

Impact of geometric features of impermeable discrete bedform on hyporheic exchange

doi: 10.1016/j.wse.2024.01.003
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.11472168).

  • Received Date: 2023-04-19
  • Accepted Date: 2023-12-19
  • Available Online: 2024-11-30
  • The bedform-driven hyporheic exchange plays a crucial role in mass transport within natural aquatic ecosystems like streams and rivers. This study aimed to unveil the impact of geometric features of impermeable discrete bedforms on hyporheic exchange by experimentally measuring quantitative hyporheic exchange flux data and variation characteristics in an annual flume. The experiments encompassed diverse conditions involving the ratio of bedform wavelength (λ) to wave height (h) and relative submergence. The study also analyzed the dependence of the effective diffusion coefficient on the geometric characteristics of bedform composition elements. The experimental results showed that, in comparison to a permeable flat bed, the presence of an impermeable discrete bedform tended to either attenuate or enhance hyporheic exchange, contingent on the geometric characteristics of bedform composition elements. The hyporheic exchange flux exhibited an initially increase followed by a decrease with increasing λ/h, with turbulence penetration emerging as the dominant mechanism governing hyporheic exchange for cases with relatively denser bedform composition elements (e.g., λ/h = 4.0). The effective diffusion coefficient peaked at λ/h around 6.0–8.0, owing to a significant augmentation in the relative contribution of pumping exchange to gross hyporheic exchange. Furthermore, the hyporheic exchange intensity generally increased with decreasing relative submergence, primarily attributed to the augmented relative contribution of pumping exchange to gross hyporheic exchange.

     

  • loading
  • Behzadi, F., Wallace, C.D., Ward, D., Zhou, H.Y., Versteeg, R., Soltanian, M.R., 2021. Bed form-induced hyporheic exchange and geochemical hotspots. Advances in Water Resources 156, 104025. https://doi.org/10.1016/j.advwatres.2021.104025.
    Betterle, A., Jaeger, A., Posselt, M., Coll, C., Benskin, J.P., Schirmer, M., 2021. Hyporheic exchange in recirculating flumes under heterogeneous bacterial and morphological conditions. Environmental Earth Sciences 80(6), 1-18. https://doi.org/10.1007/s12665-021-09472-2.
    Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., Worman, A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52(4), 603-679. https://doi.org/10.1002/2012RG000417.
    Chen, X.B., Zhao, J., Li, Y.Y., Chen, L., 2014. Experimental study of bedform-driven hyporheic exchange. Advances in Water Science 25(6), 835-841 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2014.06.010.
    Chen, X.B., Cardenas, M.B., Chen, L., 2015. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resources Research 51(4), 2923-2936. https://doi.org/10.1002/2014WR016848.
    Cook, S., Price, O., King, A., Finnegan, C., Egmond, R., Schafer, H., Pearson, J.M., Abolfathi, S., Bending, G.D., 2020. Bedform characteristics and biofilm community development interact to modify hyporheic exchange. Science of The Total Environment 749(18), 141397. https://doi.org/10.1016/j.scitotenv.2020.141397.
    Fan, J.Y., Chen, C.Y., Zhao, L., Wang, D.F., Wang, D.Z., 2020. Impact of bed roughness and sediment permeability on mass exchange across sediment-water interface. Advances in Water Science 31(2), 232-239 (in Chinese). https://doi.org/10.14042/j.cnki.32.1309.2020.02.009.
    Feng, J.H., Liu, D.F., Liu, Y., Li, Y., Li, H., Chen, L.H., Xiao, J.W., Liu, J.X., Dong, J.W., 2022. Hyporheic exchange due to in-stream geomorphic structures. Journal of Freshwater Ecology 37(1), 221-241. https://doi.org/10.1080/02705060.2022.2034673.
    Grant, S.B., Stewardson, M.J., Marusic, I., 2012. Effective diffusivity and mass flux across the sediment-water interface in streams. Water Resources Research 48(5), W05548. https://doi.org/10.1029/2011WR011148.
    Hester, E.T., Doyle, M.W., 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research 44(3), W03417. https://doi.org/10.1029/2006WR005810.
    Jin, G.Q., Li, L., 2008. Advancement in the hyporheic exchange in rivers. Advances in Water Science 19(2), 285-293 (in Chinese).
    Jin, G.Q., Tang, H.W., Gibbes, B., Li, L., Barry, D.A., 2010. Transport of nonsorbing solutes in a streambed with periodic bedforms. Advances in Water Resources 33(11), 1402-1416. https://doi.org/10.1016/j.advwatres.2010.09.003.
    Jin, G.Q, Chen, H.X., Zhang, Z.T., Jiang, Q.H., Liu, Z.Y., Tang, H.W., 2022a. Transport of phosphorus in the hyporheic zone. Water Resources Research. 58(3), e2021WR031292. https://doi.org/10.1029/2021WR031292.
    Jin, G.Q., Yuan, H.Y., Zhang, G.M., Zhang, Z.T., Chen, C., Tang, H.W., Li, L., 2022b. Effects of bed geometric characteristics on hyporheic exchange. Journal of Hydro-Environment Research 43, 1-9. https://doi.org/10.1016/j.jher.2022.05.001.
    Jin, G.Q., Zhang, S.Y., Zhou, B., Yang, Y.H., Zhang, Z.T., Chen, H.X., Tang, H.W., 2023. Solute transport characteristics in the streambed due to rigid non-submerged plants: Experiment and simulations. Journal of Hydrology 619, 129315. https://doi.org/10.1016/j.jhydrol.2023.129315.
    Krause, S., Klaar, M.J., Hannah, D.M., Mant, J., Bridgeman, J., Trimmer, M., Manning-Jones, S., 2014. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. Wiley Interdisciplinary Reviews: Water 1(3), 263-275. https://doi.org/10.1002/wat2.1019.
    Lee, A., Aubeneau, A.F., Cardenas, M.B., Liu, X.F., 2022. Hyporheic exchange due to cobbles on sandy beds. Water Resources Research 58(1), e2021WR030164. https://doi.org/10.1029/2021WR030164.
    Lewandowski, J., Arnon, S., Banks, E., Batelaan, O., Betterle, A., Broecker, T., Coll, C., Drummond, J.D., Garcia, J.G., Galloway, J. et al., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11(11), 2230. https://doi.org/10.3390/w11112230.
    Liu, H., Liu, Y., Feng, J.H., Liu, D.F., Li, Y., Chen, L.H., Xiao, J.W., 2022. Influence of the in-stream structure on solute transport in the hyporheic zone. International Journal of Environmental Research and Public Health 19(10), 5856. https://doi.org/10.3390/ijerph19105856.
    Liu, M.Y., Huai, W.X., Chen, B., 2021. Predicting the effective diffusivity across the sediment-water interface in rivers. Journal of Cleaner Production 292, 126085. https://doi.org/10.1016/j.jclepro.2021.126085.
    Marion, A., Bellinello, M., Guymer, I., Packman, A., 2002. Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research 38(10), 1209. https://doi.org/10.1029/2001WR000264.
    Mutz, M., Kalbus, E., Meineke, S., 2007. Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resources Research 43(10), W10424. https://doi.org/10.1029/2006WR005676.
    O'Connor, B.L., Harvey, J.W., 2008. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems. Water Resources Research 44(12), 681-687. https://doi.org/10.1029/2008WR007160.
    Packman, A.I., Salehin, M., Zaramella, M., 2004. Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering 130(7), 647-656. https://doi.org/10.1061/(ASCE)0733-9429 (2004)130:7(647).
    Pryshlak, T.T., Sawyer, A.H., Stonedahl, S.H., Soltanian, M.R., 2015. Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resources Research 51(11), 9127-9140. https://doi.org/10.1002/2015WR017293.
    Ren, J., Zhao, B., 2020. Model-based analysis of the effects of rippled bed morphologies on hyporheic exchange. Journal of Hydrologic Engineering 25(6), 04020023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001931.
    Sawyer, A.H., Cardenas, M.B., Buttles, J., 2011. Hyporheic exchange due to channel-spanning logs. Water Resources Research 47(8), 427-438. https://doi.org/10.1029/2011WR010484.
    Sawyer, A.H., Cardenas, M.B., Buttles, J., 2012. Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resources Research 48(1), W01529. https://doi.org/10.1029/2011WR011200.
    Wondzell, S.M., LaNier, J., Haggerty, R., Woodsmith, R.D., Edwards, R.T., 2009. Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream. Water Resources Research 45(5), W05406. https://doi.org/10.1029/2008WR007214.
    Xu, J.J., Jing, H., 2022. Research progress of river ecological restoration concept and technology. Research of Agricultural Modernization 43(4), 691-701 (in Chinese).
    Yuan, X.Z., Luo, G.Y., 2003. A brief review for ecological studies on hyporheic zone of stream ecosystem. Acta Ecologica Sinica 23(5), 956-964 (in Chinese).
    Zhang, H., Zou, Z.L., Xu, J., 2018. Study on the nonlinear evolution of sand dunes and antidunes. Coastal Engineering 37(2), 61-72 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return