Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Kehinde Nurudeen Awokoya, Vincent Olukayode Oninla, Tunmise Tunrayo Eugene-Osoikhia, Uloma Ogonnaya Njionye, Aderonke Adetutu Okoya, Gbadebo Clement Adeyinka, Odor Chioma. 2025: Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media. Water Science and Engineering, 18(1): 11-20. doi: 10.1016/j.wse.2024.01.004
Citation: Kehinde Nurudeen Awokoya, Vincent Olukayode Oninla, Tunmise Tunrayo Eugene-Osoikhia, Uloma Ogonnaya Njionye, Aderonke Adetutu Okoya, Gbadebo Clement Adeyinka, Odor Chioma. 2025: Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media. Water Science and Engineering, 18(1): 11-20. doi: 10.1016/j.wse.2024.01.004

Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media

doi: 10.1016/j.wse.2024.01.004
  • Received Date: 2023-05-13
  • Accepted Date: 2023-12-19
  • Available Online: 2025-03-05
  • Bromocresol green (BCG) and malachite green (MG) are water-soluble toxic organic dyes with adverse health and environmental implications. This study presented a conjugate imprinted adsorbent (CIA) synthesized by incorporating trimethoprim vanillin ligand into a highly crosslinked polymer, designed for the efficient removal of BCG and MG from wastewater. Characterization of CIA involved X-ray powder diffraction, Fourier transform infrared, and scanning electron microscopic analyses. Batch adsorption processes were conducted to evaluate the adsorption characteristics of CIA, with focuses on the effects of contact time, initial dye concentration, pH, and temperature. The molecularly imprinted polymers (MIPs) achieved removal efficiencies of 99.27% and 98.99% at equilibrium for BCG and MG adsorption, respectively. The non-imprinted polymers (NIPs) demonstrated BCG and MG adsorption efficiencies of 51.52% and 62.90% at equilibrium, respectively. Kinetic and isotherm models were employed to elucidate the BCG and MG adsorption mechanisms. The thermodynamic results indicated non-spontaneous and spontaneous reactions for BCG and MG adsorption on MIPs under the examined temperature conditions. The adsorbent exhibited sustained high removal efficiency through five reuse cycles, with no apparent reduction in adsorption performance. Validation of the adsorbent using real textile wastewater samples achieved BCG and MG removal efficiencies of 85.5%-87.5%. The adsorbent outperformed previously reported materials in BCG and MG adsorption. The synthesized CIA is a promising adsorbent for BCG and MG dye removal, contributing to water sustainability.

     

  • loading
  • Adam, A.M.A., Saad, H.A., Atta, A.A., Alsawat, M., Hegab, M.S., Refat, M.S., Altalhi, T.A., Alosaimi, E.H., Younes, A.A.O., 2021. Preparation and characterization of new CrFeO3-carbon composites using environmentally friendly methods to remove organic dye pollutants from aqueous solutions. Crystals 11(8), 960, https://doi.org/10.3390/cryst11080960.
    Adeyemo, A.A., Adeoye, I.O., Bello, O.S., 2017. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 7, 543-568, https://doi.org/10.1007/s13201-015-0322-y.
    Ahmad, A.L., Lah, N.F.C., Chun, S., 2015. Low molecular imprinted polymer for atrazine detection sensor: Preliminary study. Chemical Engineering Transactions 45, 1483-1488, https://doi.org/10.3303/CET1545248.
    Ali, N., Said, A., Ali, F., Raziq, F., Ali, Z., Bilal, M., Reinert, L., Begum, T., Iqbal, H.M.N., 2020. Photocatalytic degradation of Congo Red dye from aqueous environment using cobalt ferrite nanostructures: Development, characterization, and photocatalytic performance. Water Air Soil Pollut. 231, 50, https://doi.org/10.1007/s11270-020-4410-8.
    Alkaim, A.F., Sadik, Z., Mahdi, D.K., Alshref, S.M., Al-Sammarraie, A.M., Alamgir, F.M., Singh, P.M., Aljeboree, A.M., 2015. Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Kor. J. Chem. Eng. 32, 2456-2462, https://doi.org/10.1007/s11814-015-0078-y.
    Awokoya, K.N., Batlokwa, B.S, Moronkola, B.A., Chigome, S., Ondigo, D.A., Tshentu, Z., Torto, N., 2013. Development of a styrene based molecularly imprinted polymer and its molecular recognition properties of vanadyl tetraphenylporphyrin in rrganic media. International Journal of Polymeric Materials and Polymeric Biomaterials 63(2), 107-113, https://doi.org/10.1080/00914037.2013.769255.
    Awokoya, K.N., Oninla, V.O., Babalola, J.O., Mbaeyi, N.N., Folorunso, T.J., Ndukwe, N.A., 2019. Adsorption of malachite green onto Styrene-Methacrylate based molecularly imprinted polymer. IFE J. Sci. 21(3), 67-80, https://doi.org/10.4314/ijs.v21i3.7.
    Awokoya, K.N., Okoya, A.A., Elujulo, O., 2021a. Preparation, characterization and evaluation of a styrene-based molecularly imprinted polymer for capturing pyridine and pyrrole from crude oil. Scientific African 13, e00947, https://doi.org/10.1016/j.sciaf.2021.e00947.
    Awokoya, K.N., Oninla, V.O., Bello, D.J., 2021b. Corrigendum to “Synthesis of oxidized Dioscorea dumentorum starch nanoparticles for the adsorption of lead (II) and cadmium (II) ions from wastewater” [Environ. Nanotechnol. Monit. Manage. 15 (May) (2021) 100440]. Environ. Nanotechnol. Monit. Manag. 16, 100489, https://doi.org/10.1016/j.enmm.2021.100489.
    Awokoya, K.N., Oninla, V.O., Adeyinka, G.C., Ajadi, M.O., Chidimma, O.T., Fakola, E.G., Akinyele, O.F., 2022. Experimental and computational studies of microwave-assisted watermelon rind-styrene based molecular imprinted polymer for the removal of malachite green from aqueous solution. Scientific African 16, e01194, https://doi.org/10.1016/j.sciaf.2022.e01194.
    Bora, L.V., Thakkar, S.P., Vadaliya, K.S., Bora, N.V., 2023. Waste fly ash-ZnO as a novel sunlight-responsive photocatalyst for dye discoloration. Water Sci. Eng. 16(1), 76-82, https://doi.org/10.1016/j.wse.2022.11.001.
    Cantarella, M., Carroccio, S.C., Dattilo, S., Avolio, R., Castaldo, R., Puglisi, C., Privitera, V., 2019. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem. Eng. J. 367, 180-188, https://doi.org/10.1016/j.cej.2019.02.146.
    da Silva, D.F., Ogawa, C.Y.L., Sato, F., Neto, A.M., Larsen, F.H., Matumoto-Pintro, P.T., 2020. Chemical and physical characterization of Konjac glucomannan-based powders by FTIR and 13C MAS NMR. Powder Technol. 361, 610-616, https://doi.org/10.1016/j.powtec.2019.11.071.
    De-Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 9, 10-40, https://doi.org/10.1016/j.susmat.2016.06.002.
    Farhadi, A., Ameri, A., Tamjidi, S., 2021. Application of agricultural wastes as a low-cost adsorbent for removal of heavy metals and dyes from wastewater: A review study. Phys. Chem. Res. 9(2), 211-226, https://doi.org/10.22036/PCR.2021.256683.1852.
    Foguel, M.V., Pedro, N.T.B., Wong, A., Khan, S., Zanoni, M.V.B., Sotomayor, M.P.T., 2017. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta 170, 244-251, https://doi.org/10.1016/j.talanta.2017.04.013.
    Freundlich, H.M., 1906. Uber die adsorption in lasungen. Z. Phys. Chem. 57, 385-470.
    Gao, H.J., Wang, S.F., Fang, L.M., Sun, G.A., Chen, X.P., Tang, S.N., Yang, H., Sun, G.Z., Li, D.F., 2021. Nanostructured spinel-type M (M=Mg, Co, Zn)Cr2O4 oxides: Novel adsorbents for aqueous Congo Red removal. Mater. Today Chem. 22, 100593, https://doi.org/10.1016/j.mtchem.2021.100593.
    Garba, H., Yakasai, J.B., Waziri, I., Bisiriyu, I.O., 2020. Transition metal complexes of Schiff base ligand derived from trimethoprim with cyclohexanone: Synthesis, characterization, antimicrobial and computational studies. Acta Scientific Pharmaceutical Sciences 4(5), 36-45, https://doi.org/10.31080/ASPS.2020.04.0528.
    Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C., 2016. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9(S1), S707-S716, https://doi.org/10.1016/j.arabjc.2011.07.021.
    Habiba, U., Siddique, T.A., Joo, T.C., Salleh, A., Ang, B.C., Afifi, A.M., 2017. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo Red and chromium(VI) by flocculation/adsorption. Carbohydr. Polym. 157, 1568-1576, https://doi.org/10.1016/j.carbpol.2016.11.037.
    Hameed, B.H., El-Khaiary, M.I., 2008. Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J. Hazard Mater. 159(2-3), 574-579, https://doi.org/10.1016/j.jhazmat.2008.02.054.
    Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451-465, https://doi.org/10.1016/S0032-9592(98)00112-5.
    Jia, Y., Ding, L., Ren, R., Zhong, M., Ma, J., Fan, X., 2020. Performances and mechanism of methyl orange and Congo red adsorbed on the magnetic ion-exchange resin. J. Chem. Eng. Data 65(2), 725-736, https://doi.org/10.1021/acs.jced.9b00951.
    Kadhom, M., Albayati, N., Alalwan, H., Al-Furaiji, M., 2020. Removal of dyes by agricultural waste. Sustain. Chem. Pharm. 16, 100259, https://doi.org/10.1016/j.scp.2020.100259.
    Kushwaha, A.K., Gupta, N., Chattopadhya, M.C., 2014. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J. Saudi Chem. Soc. 18(3), 200-207, https://doi.org/10.1016/j.jscs.2011.06.011.
    Lade, H., Govindwar, S., Paul, D., 2015. Mineralization and detoxification of the carcinogenic azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int. J. Environ. Res. Publ. Health 12(6), 6894-6918, https://doi.org/10.3390/ijerph120606894.
    Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar Band 24, 1-39.
    Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1402, https://doi.org/10.1021/ja02242a004.
    Leng, L., Yuan, X ., Huang, H., Shao, J., Wang, H., Chen, X., Zeng, G., 2015. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Appl. Surf. Sci. 346, 223-231, https://doi.org/10.1016/j.apsusc.2015.04.014.
    Li, M., Li, J.T., Sun, H.W., 2008. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation. Ultrason. Sonochem. 15(5), 717-723, https://doi.org/10.1016/j.ultsonch.2007.10.001.
    Maderova, Z., Baldikova, E., Pospiskova, K., Safarik, I., Safarikova, M., 2016. Removal of dyes by adsorption on magnetically modified activated sludge. Int. J. Environ. Sci. Technol. 13, 1653-1664, https://doi.org/10.1007/s13762-016-1001-8.
    Mahamad, M.N., Zaini, M.A.A., Zakaria, Z.A., 2015. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int. Biodeterior. Biodegrad. 102, 274-280, https://doi.org/10.1016/j.ibiod.2015.03.009.
    Miyah, Y., Lahrichi, A., Idrissi, M., Khalil, A., Zerrouq, F., 2018. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surface. Interfac. 11, 74-81, https://doi.org/10.1016/j.surfin.2018.03.006.
    Naushad, M., Ahamad, T., Alothman, Z.A., Al-Muhtaseb, A.H., 2019. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & updates isotherm modelling. J. Mol. Liq. 279, 1-8, https://doi.org/10.1016/j.molliq.2019.01.090.
    Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. 16(3), 243-251, https://doi.org/10.1016/j.wse.2023.01.004.
    Nodehi, R., Shayesteh, H., Kelishami, A.R., 2020. Enhanced adsorption of Congo red using cationic surfactant functionalized zeolite particles. Microchem. J. 153, 104281, https://doi.org/10.1016/j.microc.2019.104281.
    Oladoye, P.O., Ajiboye, T.O., Wanyonyi, W.C., Omotola, E.O., Oladipo, M.E., 2023. Insights into remediation technology for malachite green wastewater treatment. Water Sci. Eng. 16(3), 261-270, https://doi.org/10.1016/j.wse.2023.03.002.
    Oninla, V.O., Awokoya, K.N., Babalola, J.O., Balogun, K.I., Ismail, O.S., 2022. Optimization of Synthesis Conditions for Graft Copolymerization of Methacrylic Acid onto Garcinia Kola Pods and Use in the Sequestration of Cationic Dyes from Simulated Wastewaters. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-022-03443-8.
    Onu, C.E., Ekwueme, B.N., Ohale, P.E., Onu, C.P., Asadu, C.O., Obi, C.C., Dibia, K.T., Onu, O.O., 2023. Decolourization of bromocresol green dye solution by acid functionalized rice husk: Artificial intelligence modeling, GA optimization, and adsorption studies. Journal of Hazardous Materials Advances 9, 100224, https://doi.org/10.1016/j.hazadv.2022.100224.
    Popoola, L.T., Aderibigbe, T.A., Yusuff, A.S., Munir, M.M., 2018. Brilliant green dye adsorption onto composite snail shell-rice husk: Adsorption isotherm, kinetic, mechanistic, and thermodynamics analysis. Environ. Qual. Manag. 28(2), 63-78, https://doi.org/10.1002/tqem.21597.
    Rodriguez-Mozaz, S., Lopez de Alda, M.J., Barcelo, D., 2007. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A 1152, 97-115, https://doi.org/10.1016/j.chroma.2007.01.046.
    Salmalian, E., Rezaei, H., Shahbazi, A., 2019. Removal of bromocresol green from aqueous solutions using chitin nanofibers. Environ. Resour. Res. 7, 79-86.
    Samchetshabam, G., Hussan, A., Choudhury, T., 2016. Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol. 35(3C), 2349-2353.
    Shokrollahi, A., Alizadeh, A., Malekhosseini, Z., Ranjbar, M., 2011. Removal of bromocresol green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: Kinetic and thermodynamic study of removal process. J. Chem. Eng. Data 56(10), 3738-3746, https://doi.org/10.1021/je200311y.
    Singh, D.K., Mishra, S., 2010. Synthesis and characterization of Hg(II)-ion-imprinted polymer: Kinetic and isotherm studies. Desalination 257(1-3), 177-183, https://doi.org/10.1016/j.desal.2010.02.026.
    Taibi, Z., Bentaleb, K., Bouberka, Z., Pierlot, C., Vandewale, M., Volkringer, C., Supiot, P., Maschke, U., 2023. Adsorption of orange G dye on hydrophobic activated bentonite from aqueous solution. Crystals. 13(2), 211, https://doi.org/10.3390/cryst13020211.
    Ullah, S., Ur-Rahman, A., Ullah, F., Rashid, A., Arshad, T., Viglasova, E., Galambos, M., Mahmoodi, N.M., Ullah, H., 2021. Adsorption of malachite green dye onto mesoporous natural inorganic clays: Their equilibrium isotherm and kinetics studies. Water 13(7), 965, https://doi.org/10.3390/w13070965.
    Visa, M., Bogatu, C., Duta, A., 2010. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Appl. Surf. Sci. 256(17), 5486-5491, https://doi.org/10.1016/j.apsusc.2009.12.145.
    Weber, W.J., Morris, J.S., 1963. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. 89(2), 31-59, https://doi.org/10.1061/JSEDAI.0000430.
    Whitcombe, M.J., Iva, C., Lee, L., Sergey, A.P., James, N., Robert, P., Adrian, H., 2011. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 40(3), 1547-1571, https://doi.org/10.1039/C0CS00049C.
    Yildirim, A., Acay, H., Baran, A., 2021. Synthesis and characterization of the molecularly imprinted composite as a novel adsorbent and its competition with non-imprinted composite for removal of dye. Journal of the Turkish Chemical Society 8, 609-622, https://doi.org/10.18596/jotcsa.868054.
    Zhang, J., Deng, Y., Zhou, Q., Qin, P., Liu, Y., Wang, C., 2017. Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution. J. Hazard Mater. 331, 210-217, https://doi.org/10.1016/j.jhazmat.2017.02.051.
    Zhu, G., Cheng, G., Wang, P., Li, W., Wang, Y., Fan, J., 2019. Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 200, 307-315, https://doi.org/10.1016/j.talanta.2019.03.070.
    Zhu, X.D., Liu, Y.C., Zhou, C., Zhang, S.C., Chen, J.M., 2014. Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustainable Chem. Eng. 2(4), 969-977, https://doi.org/10.1021/sc400547y.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return