Citation: | Kehinde Nurudeen Awokoya, Vincent Olukayode Oninla, Tunmise Tunrayo Eugene-Osoikhia, Uloma Ogonnaya Njionye, Aderonke Adetutu Okoya, Gbadebo Clement Adeyinka, Odor Chioma. 2025: Synthesis of trimethoprim vanillin anchored conjugate imprinted polymers for removal of bromocresol green and malachite green from aqueous media. Water Science and Engineering, 18(1): 11-20. doi: 10.1016/j.wse.2024.01.004 |
Adam, A.M.A., Saad, H.A., Atta, A.A., Alsawat, M., Hegab, M.S., Refat, M.S., Altalhi, T.A., Alosaimi, E.H., Younes, A.A.O., 2021. Preparation and characterization of new CrFeO3-carbon composites using environmentally friendly methods to remove organic dye pollutants from aqueous solutions. Crystals 11(8), 960, https://doi.org/10.3390/cryst11080960.
|
Adeyemo, A.A., Adeoye, I.O., Bello, O.S., 2017. Adsorption of dyes using different types of clay: A review. Appl. Water Sci. 7, 543-568, https://doi.org/10.1007/s13201-015-0322-y.
|
Ahmad, A.L., Lah, N.F.C., Chun, S., 2015. Low molecular imprinted polymer for atrazine detection sensor: Preliminary study. Chemical Engineering Transactions 45, 1483-1488, https://doi.org/10.3303/CET1545248.
|
Ali, N., Said, A., Ali, F., Raziq, F., Ali, Z., Bilal, M., Reinert, L., Begum, T., Iqbal, H.M.N., 2020. Photocatalytic degradation of Congo Red dye from aqueous environment using cobalt ferrite nanostructures: Development, characterization, and photocatalytic performance. Water Air Soil Pollut. 231, 50, https://doi.org/10.1007/s11270-020-4410-8.
|
Alkaim, A.F., Sadik, Z., Mahdi, D.K., Alshref, S.M., Al-Sammarraie, A.M., Alamgir, F.M., Singh, P.M., Aljeboree, A.M., 2015. Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Kor. J. Chem. Eng. 32, 2456-2462, https://doi.org/10.1007/s11814-015-0078-y.
|
Awokoya, K.N., Batlokwa, B.S, Moronkola, B.A., Chigome, S., Ondigo, D.A., Tshentu, Z., Torto, N., 2013. Development of a styrene based molecularly imprinted polymer and its molecular recognition properties of vanadyl tetraphenylporphyrin in rrganic media. International Journal of Polymeric Materials and Polymeric Biomaterials 63(2), 107-113, https://doi.org/10.1080/00914037.2013.769255.
|
Awokoya, K.N., Oninla, V.O., Babalola, J.O., Mbaeyi, N.N., Folorunso, T.J., Ndukwe, N.A., 2019. Adsorption of malachite green onto Styrene-Methacrylate based molecularly imprinted polymer. IFE J. Sci. 21(3), 67-80, https://doi.org/10.4314/ijs.v21i3.7.
|
Awokoya, K.N., Okoya, A.A., Elujulo, O., 2021a. Preparation, characterization and evaluation of a styrene-based molecularly imprinted polymer for capturing pyridine and pyrrole from crude oil. Scientific African 13, e00947, https://doi.org/10.1016/j.sciaf.2021.e00947.
|
Awokoya, K.N., Oninla, V.O., Bello, D.J., 2021b. Corrigendum to “Synthesis of oxidized Dioscorea dumentorum starch nanoparticles for the adsorption of lead (II) and cadmium (II) ions from wastewater” [Environ. Nanotechnol. Monit. Manage. 15 (May) (2021) 100440]. Environ. Nanotechnol. Monit. Manag. 16, 100489, https://doi.org/10.1016/j.enmm.2021.100489.
|
Awokoya, K.N., Oninla, V.O., Adeyinka, G.C., Ajadi, M.O., Chidimma, O.T., Fakola, E.G., Akinyele, O.F., 2022. Experimental and computational studies of microwave-assisted watermelon rind-styrene based molecular imprinted polymer for the removal of malachite green from aqueous solution. Scientific African 16, e01194, https://doi.org/10.1016/j.sciaf.2022.e01194.
|
Bora, L.V., Thakkar, S.P., Vadaliya, K.S., Bora, N.V., 2023. Waste fly ash-ZnO as a novel sunlight-responsive photocatalyst for dye discoloration. Water Sci. Eng. 16(1), 76-82, https://doi.org/10.1016/j.wse.2022.11.001.
|
Cantarella, M., Carroccio, S.C., Dattilo, S., Avolio, R., Castaldo, R., Puglisi, C., Privitera, V., 2019. Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem. Eng. J. 367, 180-188, https://doi.org/10.1016/j.cej.2019.02.146.
|
da Silva, D.F., Ogawa, C.Y.L., Sato, F., Neto, A.M., Larsen, F.H., Matumoto-Pintro, P.T., 2020. Chemical and physical characterization of Konjac glucomannan-based powders by FTIR and 13C MAS NMR. Powder Technol. 361, 610-616, https://doi.org/10.1016/j.powtec.2019.11.071.
|
De-Gisi, S., Lofrano, G., Grassi, M., Notarnicola, M., 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 9, 10-40, https://doi.org/10.1016/j.susmat.2016.06.002.
|
Farhadi, A., Ameri, A., Tamjidi, S., 2021. Application of agricultural wastes as a low-cost adsorbent for removal of heavy metals and dyes from wastewater: A review study. Phys. Chem. Res. 9(2), 211-226, https://doi.org/10.22036/PCR.2021.256683.1852.
|
Foguel, M.V., Pedro, N.T.B., Wong, A., Khan, S., Zanoni, M.V.B., Sotomayor, M.P.T., 2017. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta 170, 244-251, https://doi.org/10.1016/j.talanta.2017.04.013.
|
Freundlich, H.M., 1906. Uber die adsorption in lasungen. Z. Phys. Chem. 57, 385-470.
|
Gao, H.J., Wang, S.F., Fang, L.M., Sun, G.A., Chen, X.P., Tang, S.N., Yang, H., Sun, G.Z., Li, D.F., 2021. Nanostructured spinel-type M (M=Mg, Co, Zn)Cr2O4 oxides: Novel adsorbents for aqueous Congo Red removal. Mater. Today Chem. 22, 100593, https://doi.org/10.1016/j.mtchem.2021.100593.
|
Garba, H., Yakasai, J.B., Waziri, I., Bisiriyu, I.O., 2020. Transition metal complexes of Schiff base ligand derived from trimethoprim with cyclohexanone: Synthesis, characterization, antimicrobial and computational studies. Acta Scientific Pharmaceutical Sciences 4(5), 36-45, https://doi.org/10.31080/ASPS.2020.04.0528.
|
Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C., 2016. Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9(S1), S707-S716, https://doi.org/10.1016/j.arabjc.2011.07.021.
|
Habiba, U., Siddique, T.A., Joo, T.C., Salleh, A., Ang, B.C., Afifi, A.M., 2017. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo Red and chromium(VI) by flocculation/adsorption. Carbohydr. Polym. 157, 1568-1576, https://doi.org/10.1016/j.carbpol.2016.11.037.
|
Hameed, B.H., El-Khaiary, M.I., 2008. Malachite green adsorption by rattan sawdust: Isotherm, kinetic and mechanism modeling. J. Hazard Mater. 159(2-3), 574-579, https://doi.org/10.1016/j.jhazmat.2008.02.054.
|
Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451-465, https://doi.org/10.1016/S0032-9592(98)00112-5.
|
Jia, Y., Ding, L., Ren, R., Zhong, M., Ma, J., Fan, X., 2020. Performances and mechanism of methyl orange and Congo red adsorbed on the magnetic ion-exchange resin. J. Chem. Eng. Data 65(2), 725-736, https://doi.org/10.1021/acs.jced.9b00951.
|
Kadhom, M., Albayati, N., Alalwan, H., Al-Furaiji, M., 2020. Removal of dyes by agricultural waste. Sustain. Chem. Pharm. 16, 100259, https://doi.org/10.1016/j.scp.2020.100259.
|
Kushwaha, A.K., Gupta, N., Chattopadhya, M.C., 2014. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. J. Saudi Chem. Soc. 18(3), 200-207, https://doi.org/10.1016/j.jscs.2011.06.011.
|
Lade, H., Govindwar, S., Paul, D., 2015. Mineralization and detoxification of the carcinogenic azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int. J. Environ. Res. Publ. Health 12(6), 6894-6918, https://doi.org/10.3390/ijerph120606894.
|
Lagergren, S., 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar Band 24, 1-39.
|
Langmuir, I., 1918. The adsorption of gases on plane surfaces of glass mica and platinum. J. Am. Chem. Soc. 40(9), 1361-1402, https://doi.org/10.1021/ja02242a004.
|
Leng, L., Yuan, X ., Huang, H., Shao, J., Wang, H., Chen, X., Zeng, G., 2015. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Appl. Surf. Sci. 346, 223-231, https://doi.org/10.1016/j.apsusc.2015.04.014.
|
Li, M., Li, J.T., Sun, H.W., 2008. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation. Ultrason. Sonochem. 15(5), 717-723, https://doi.org/10.1016/j.ultsonch.2007.10.001.
|
Maderova, Z., Baldikova, E., Pospiskova, K., Safarik, I., Safarikova, M., 2016. Removal of dyes by adsorption on magnetically modified activated sludge. Int. J. Environ. Sci. Technol. 13, 1653-1664, https://doi.org/10.1007/s13762-016-1001-8.
|
Mahamad, M.N., Zaini, M.A.A., Zakaria, Z.A., 2015. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int. Biodeterior. Biodegrad. 102, 274-280, https://doi.org/10.1016/j.ibiod.2015.03.009.
|
Miyah, Y., Lahrichi, A., Idrissi, M., Khalil, A., Zerrouq, F., 2018. Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies. Surface. Interfac. 11, 74-81, https://doi.org/10.1016/j.surfin.2018.03.006.
|
Naushad, M., Ahamad, T., Alothman, Z.A., Al-Muhtaseb, A.H., 2019. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & updates isotherm modelling. J. Mol. Liq. 279, 1-8, https://doi.org/10.1016/j.molliq.2019.01.090.
|
Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Sci. Eng. 16(3), 243-251, https://doi.org/10.1016/j.wse.2023.01.004.
|
Nodehi, R., Shayesteh, H., Kelishami, A.R., 2020. Enhanced adsorption of Congo red using cationic surfactant functionalized zeolite particles. Microchem. J. 153, 104281, https://doi.org/10.1016/j.microc.2019.104281.
|
Oladoye, P.O., Ajiboye, T.O., Wanyonyi, W.C., Omotola, E.O., Oladipo, M.E., 2023. Insights into remediation technology for malachite green wastewater treatment. Water Sci. Eng. 16(3), 261-270, https://doi.org/10.1016/j.wse.2023.03.002.
|
Oninla, V.O., Awokoya, K.N., Babalola, J.O., Balogun, K.I., Ismail, O.S., 2022. Optimization of Synthesis Conditions for Graft Copolymerization of Methacrylic Acid onto Garcinia Kola Pods and Use in the Sequestration of Cationic Dyes from Simulated Wastewaters. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-022-03443-8.
|
Onu, C.E., Ekwueme, B.N., Ohale, P.E., Onu, C.P., Asadu, C.O., Obi, C.C., Dibia, K.T., Onu, O.O., 2023. Decolourization of bromocresol green dye solution by acid functionalized rice husk: Artificial intelligence modeling, GA optimization, and adsorption studies. Journal of Hazardous Materials Advances 9, 100224, https://doi.org/10.1016/j.hazadv.2022.100224.
|
Popoola, L.T., Aderibigbe, T.A., Yusuff, A.S., Munir, M.M., 2018. Brilliant green dye adsorption onto composite snail shell-rice husk: Adsorption isotherm, kinetic, mechanistic, and thermodynamics analysis. Environ. Qual. Manag. 28(2), 63-78, https://doi.org/10.1002/tqem.21597.
|
Rodriguez-Mozaz, S., Lopez de Alda, M.J., Barcelo, D., 2007. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A 1152, 97-115, https://doi.org/10.1016/j.chroma.2007.01.046.
|
Salmalian, E., Rezaei, H., Shahbazi, A., 2019. Removal of bromocresol green from aqueous solutions using chitin nanofibers. Environ. Resour. Res. 7, 79-86.
|
Samchetshabam, G., Hussan, A., Choudhury, T., 2016. Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol. 35(3C), 2349-2353.
|
Shokrollahi, A., Alizadeh, A., Malekhosseini, Z., Ranjbar, M., 2011. Removal of bromocresol green from aqueous solution via adsorption on Ziziphus nummularia as a new, natural, and low-cost adsorbent: Kinetic and thermodynamic study of removal process. J. Chem. Eng. Data 56(10), 3738-3746, https://doi.org/10.1021/je200311y.
|
Singh, D.K., Mishra, S., 2010. Synthesis and characterization of Hg(II)-ion-imprinted polymer: Kinetic and isotherm studies. Desalination 257(1-3), 177-183, https://doi.org/10.1016/j.desal.2010.02.026.
|
Taibi, Z., Bentaleb, K., Bouberka, Z., Pierlot, C., Vandewale, M., Volkringer, C., Supiot, P., Maschke, U., 2023. Adsorption of orange G dye on hydrophobic activated bentonite from aqueous solution. Crystals. 13(2), 211, https://doi.org/10.3390/cryst13020211.
|
Ullah, S., Ur-Rahman, A., Ullah, F., Rashid, A., Arshad, T., Viglasova, E., Galambos, M., Mahmoodi, N.M., Ullah, H., 2021. Adsorption of malachite green dye onto mesoporous natural inorganic clays: Their equilibrium isotherm and kinetics studies. Water 13(7), 965, https://doi.org/10.3390/w13070965.
|
Visa, M., Bogatu, C., Duta, A., 2010. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Appl. Surf. Sci. 256(17), 5486-5491, https://doi.org/10.1016/j.apsusc.2009.12.145.
|
Weber, W.J., Morris, J.S., 1963. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. 89(2), 31-59, https://doi.org/10.1061/JSEDAI.0000430.
|
Whitcombe, M.J., Iva, C., Lee, L., Sergey, A.P., James, N., Robert, P., Adrian, H., 2011. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 40(3), 1547-1571, https://doi.org/10.1039/C0CS00049C.
|
Yildirim, A., Acay, H., Baran, A., 2021. Synthesis and characterization of the molecularly imprinted composite as a novel adsorbent and its competition with non-imprinted composite for removal of dye. Journal of the Turkish Chemical Society 8, 609-622, https://doi.org/10.18596/jotcsa.868054.
|
Zhang, J., Deng, Y., Zhou, Q., Qin, P., Liu, Y., Wang, C., 2017. Novel geochemistry-inspired method for the deep removal of vanadium from molybdate solution. J. Hazard Mater. 331, 210-217, https://doi.org/10.1016/j.jhazmat.2017.02.051.
|
Zhu, G., Cheng, G., Wang, P., Li, W., Wang, Y., Fan, J., 2019. Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples. Talanta 200, 307-315, https://doi.org/10.1016/j.talanta.2019.03.070.
|
Zhu, X.D., Liu, Y.C., Zhou, C., Zhang, S.C., Chen, J.M., 2014. Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustainable Chem. Eng. 2(4), 969-977, https://doi.org/10.1021/sc400547y.
|