Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Xiao-yi Wang, Cheng-liang Dong, Kun Xu, Ri-long Xiao, Xiu-juan Feng. 2025: Ciprofloxacin (CIP)-polluted water treatment via a facile mechanochemical route: Influencing factors and mechanism insights. Water Science and Engineering, 18(1): 21-29. doi: 10.1016/j.wse.2024.03.004
Citation: Xiao-yi Wang, Cheng-liang Dong, Kun Xu, Ri-long Xiao, Xiu-juan Feng. 2025: Ciprofloxacin (CIP)-polluted water treatment via a facile mechanochemical route: Influencing factors and mechanism insights. Water Science and Engineering, 18(1): 21-29. doi: 10.1016/j.wse.2024.03.004

Ciprofloxacin (CIP)-polluted water treatment via a facile mechanochemical route: Influencing factors and mechanism insights

doi: 10.1016/j.wse.2024.03.004
Funds:

This work was supported by the National Key Research and Development Program of China (Grants No. 2021YFC2902701, 2021YFC2902100, 2019YFC1805600, and 2018YFC1801800), the Fundamental Research Funds for the Central Universities (Grant No. 2022QN1051), the Shandong Provincial Major Science and Technology Innovation Project (Grant No. 2021CXGC011206), and the Key Project of the National Natural Science Foundation of China (Grant No. 52130402).

  • Received Date: 2023-10-30
  • Accepted Date: 2024-03-08
  • Available Online: 2025-03-05
  • Degrading ciprofloxacin (CIP)-polluted water has recently emerged as an urgent environmental issue. This study introduced mechanochemical treatment (MCT) as an innovative and underexplored approach for the degradation of CIP in water. The influence of various additives (CaO, Fe2O3, SiO2, Al, and Fe) on CIP degradation efficiency was investigated. Additionally, six types of composite additives (Fe-CaO, Fe-Fe2O3, Fe-SiO2, Fe-Al, Al-SiO2, and Al-CaO) were explored, with the composite of 20% Fe and 80% SiO2 exhibiting notable performance. The impacts of additive content, pH value, and co-existing ions on CIP degradation efficiency were investigated. Furthermore, the effectiveness of MCT in degrading other medical pollutants (norfloxacin, ofloxacin, and enrofloxacin) was verified. The transformations and changes in the crystal structure, oxidation state, microstructure, and morphology of the Fe-SiO2 composite additive were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. This study proposed a sigmoid trend kinetic model (the Delogu model) that better elucidates the MCT process. Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature. This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.

     

  • loading
  • Beyer, M.K., Clausen, S.H., 2005. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 105(8), 2921-2948, https://doi.org/10.1021/cr030697h.
    Cagnetta, G., Robertson, J., Huang, J., Zhang, K., Yu, G., 2016. Mechanochemical destruction of halogenated organic pollutants: A critical review. J. Hazard Mater. 313, 85-102, https://doi.org/10.1016/j.jhazmat.2016.03.076.
    Cagnetta, G., Huang, J., Lu, M., Wang, B., Wang, Y., Deng, S., Yu, G., 2017. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. Chemosphere 184, 879-883, https://doi.org/10.1016/j.chemosphere.2017.06.075.
    Cai, X., Huang, Q., Hong, Z., Zhang, Y., Hu, H., Huang, Z., Liang, J., Qin, Y., 2021. Cu anchored on manganese residue through mechanical activation to prepare a Fe-Cu@SiO2/starch-derived carbon composites with highly stable and active visible light photocatalytic performance. J. Environ. Chem. Eng. 9(1), 104710, https://doi.org/10.1016/j.jece.2020.104710.
    Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., 2020. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 268, 121725, https://doi.org/10.1016/j.jclepro.2020.121725.
    Chen, Z., Lu, S., Tang, M., Lin, X., Qiu, Q., He, H., Yan, J., 2019. Mechanochemical stabilization of heavy metals in fly ash with additives. Sci. Total Environ. 694, 133813, https://doi.org/10.1016/j.scitotenv.2019.133813.
    Delogu, F., Orru, R., Cao, G., 2003. A novel macrokinetic approach for mechanochemical reactions. Chem. Eng. Sci. 58(3-6), 815-821, https://doi.org/10.1016/S0009-2509(02)00612-7.
    Fan, G., Liu, X., Li, X., Lin, C., He, M., Ouyang, W., 2020. Mechanochemical treatment with CaO-activated PDS of HCB contaminated soils. Chemosphere 257, 127207, https://doi.org/10.1016/j.chemosphere.2020.127207.
    Feng, X., Dong, C., Wang, X., Wang, J., 2022. Mechanochemical treatment for degradation of ciprofloxacin (CIP) in solutions. Water Sci. Technol. 86(8), 1958-1968, https://doi.org/10.2166/wst.2022.309.
    Friscic, T., Mottillo, C., Titi, H.M., 2020. Mechanochemistry for synthesis. Angew. Chem. 132(3), 1030-1041, https://doi.org/10.1002/ange.201906755.
    Ge, T., Jiang, Z., Shen, L., Li, J., Lu, Z., Zhang, Y., Wang, F., 2021. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI). Separ. Purif. Technol. 263, 118401, https://doi.org/10.1016/j.seppur.2021.118401.
    Ge, T., Shen, L., Li, J., Zhang, Y., Zhang, Y., 2022. Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids Surf. A Physicochem. Eng. Asp. 635, 128069, https://doi.org/10.1016/j.colsurfa.2021.128069.
    James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K.D., Hyett, G., Jones, W., 2012. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41(1), 413-447.
    James, S.L., Friscic, T., 2013. Mechanochemistry. Chem. Soc. Rev. 42(18), 7494-7496.
    Li, J., Nagamani, C., Moore, J.S., 2015. Polymer mechanochemistry: From destructive to productive. Acc. Chem. Res. 48(8), 2181-2190, https://doi.org/10.1021/acs.accounts.5b00184.
    Li, X., Luo, W., Zhu, K., Chen, Y., Huang, Y., Jin, C., Qiu, R., Luo, S., Guan, G., Yan, K., 2023. Electronic modulation of S and N co-implanted carbon as Fenton-like photocatalysts for water remediation. Chem. Eng. J. 474, 146016, https://doi.org/10.1016/j.cej.2023.146016.
    Liu, N., Lu, N., Su, Y., Wang, P., Quan, X., 2019. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separ. Purif. Technol. 211, 782-789, https://doi.org/10.1016/j.seppur.2018.10.027.
    Lou, Z., Song, L., Liu, W., Wu, S., He, F., Yu, J., 2022. Deciphering CaO-induced peroxydisulfate activation for destruction of halogenated organic pollutants in a low energy vibrational mill. Chem. Eng. J. 431, 134090, https://doi.org/10.1016/j.cej.2021.134090.
    Lu, X., Qiu, W., Peng, J., Xu, H., Wang, D., Cao, Y., Zhang, W., Ma, J., 2021. A review on additives-assisted ultrasound for organic pollutants degradation. J. Hazard Mater. 403, 123915, https://doi.org/10.1016/j.jhazmat.2020.12391.
    Milh, H., Yu, X., Cabooter, D., Dewil, R., 2021. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci. Total Environ. 764, 144510, https://doi.org/10.1016/j.scitotenv.2020.144510.
    Moores, A., 2018. Bottom up, solid-phase syntheses of inorganic nanomaterials by mechanochemistry and aging. Curr. Opin. Green Sustainable Chem. 12, 33-37, https://doi.org/10.1016/j.cogsc.2018.05.004.
    Nasser, A., Mingelgrin, U., 2012. Mechanochemistry: A review of surface reactions and environmental applications. Appl. Clay Sci. 67, 141-150, https://doi.org/10.1016/j.clay.2011.11.018.
    Perini, L., Silva, B.F., Nogueira, R.P., 2014. Zero-valent iron mediated degradation of ciprofloxacin - assessment of adsorption, operational parameters and degradation products. Chemosphere 117, 345-352, https://doi.org/10.1016/j.chemosphere.2014.07.071.
    Qiu, W., Vakili, M., Cagnetta, G., Huang, J., Yu, G., 2020. Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. Int. J. Biol. Macromol. 148, 543-549, https://doi.org/10.1016/j.ijbiomac.2020.01.171.
    Salvatierra, R.V., Domingues, S.H., Oliveira, M.M., Zarbin, A.J., 2013. Tri-layer graphene films produced by mechanochemical exfoliation of graphite. Carbon 57, 410-415, https://doi.org/10.1016/j.carbon.2013.02.013.
    Shehu, I.S., Adnan, R., Mohd, K.H., 2018. Photocatalytic degradation of ciprofloxacin in aqueous media: A short review. Toxicol. Environ. Chem. 100(5-7), 518-539, https://doi.org/10.1080/02772248.2018.1545128.
    Sui, H., Rong, Y., Song, J., Zhang, D., Li, H., Wu, P., Shen, Y., Huang, Y., 2018. Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill. J. Hazard Mater. 342, 201-209, https://doi.org/10.1016/j.jhazmat.2017.08.025.
    Takacs, L., 2013. The historical development of mechanochemistry. Chem. Soc. Rev. 42(18), 7649-7659.
    Wang, X., Liao, Y., Xiang, Q., Zhang, H., Li, Y., Zhong, Z., 2019. Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous Fenton-like reactions under neutral conditions. Inorg. Chem. 58(8), 4718-4721, https://doi.org/10.1021/acs.inorgchem.9b00546.
    Wang, X., Yin, K., Cao, T., Liao, Y., Wang, Z., Kou, Q., Cheng, D., 2021. Effects of Bi2O3-V2O5 mixture on microstructure and magnetic properties for Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrites sintered at low temperatures. J. Alloys Compd. 885, 160983, https://doi.org/10.1016/j.jallcom.2021.160983.
    Wen, J., Niu, G., Zhang, L., Liang, C., Guo, H., Zeng, G., 2018. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. J. Catal. 358, 141-154, https://doi.org/10.1016/j.jcat.2017.11.029.
    Zhang, K., Huang, J., Wang, H., Liu, K., Yu, G., Deng, S., Wang, B., 2014. Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere 116, 40-45, https://doi.org/10.1016/j.chemosphere.2014.02.006.
    Zhu, K., Qin, W., Gan, Y., Huang, Y., Jiang, Z., Chen, Y., Li, X., Yan, K., 2023. Acceleration of Fe3+/Fe2+ cycle in garland-like MIL-101(Fe)/MoS2 nanosheets to promote peroxymonosulfate activation for sulfamethoxazole degradation. Chem. Eng. J. 470, 144190, https://doi.org/10.1016/j.cej.2023.144190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (7) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return