Citation: | Xiao-yi Wang, Cheng-liang Dong, Kun Xu, Ri-long Xiao, Xiu-juan Feng. 2025: Ciprofloxacin (CIP)-polluted water treatment via a facile mechanochemical route: Influencing factors and mechanism insights. Water Science and Engineering, 18(1): 21-29. doi: 10.1016/j.wse.2024.03.004 |
Beyer, M.K., Clausen, S.H., 2005. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 105(8), 2921-2948, https://doi.org/10.1021/cr030697h.
|
Cagnetta, G., Robertson, J., Huang, J., Zhang, K., Yu, G., 2016. Mechanochemical destruction of halogenated organic pollutants: A critical review. J. Hazard Mater. 313, 85-102, https://doi.org/10.1016/j.jhazmat.2016.03.076.
|
Cagnetta, G., Huang, J., Lu, M., Wang, B., Wang, Y., Deng, S., Yu, G., 2017. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. Chemosphere 184, 879-883, https://doi.org/10.1016/j.chemosphere.2017.06.075.
|
Cai, X., Huang, Q., Hong, Z., Zhang, Y., Hu, H., Huang, Z., Liang, J., Qin, Y., 2021. Cu anchored on manganese residue through mechanical activation to prepare a Fe-Cu@SiO2/starch-derived carbon composites with highly stable and active visible light photocatalytic performance. J. Environ. Chem. Eng. 9(1), 104710, https://doi.org/10.1016/j.jece.2020.104710.
|
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., 2020. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 268, 121725, https://doi.org/10.1016/j.jclepro.2020.121725.
|
Chen, Z., Lu, S., Tang, M., Lin, X., Qiu, Q., He, H., Yan, J., 2019. Mechanochemical stabilization of heavy metals in fly ash with additives. Sci. Total Environ. 694, 133813, https://doi.org/10.1016/j.scitotenv.2019.133813.
|
Delogu, F., Orru, R., Cao, G., 2003. A novel macrokinetic approach for mechanochemical reactions. Chem. Eng. Sci. 58(3-6), 815-821, https://doi.org/10.1016/S0009-2509(02)00612-7.
|
Fan, G., Liu, X., Li, X., Lin, C., He, M., Ouyang, W., 2020. Mechanochemical treatment with CaO-activated PDS of HCB contaminated soils. Chemosphere 257, 127207, https://doi.org/10.1016/j.chemosphere.2020.127207.
|
Feng, X., Dong, C., Wang, X., Wang, J., 2022. Mechanochemical treatment for degradation of ciprofloxacin (CIP) in solutions. Water Sci. Technol. 86(8), 1958-1968, https://doi.org/10.2166/wst.2022.309.
|
Friscic, T., Mottillo, C., Titi, H.M., 2020. Mechanochemistry for synthesis. Angew. Chem. 132(3), 1030-1041, https://doi.org/10.1002/ange.201906755.
|
Ge, T., Jiang, Z., Shen, L., Li, J., Lu, Z., Zhang, Y., Wang, F., 2021. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI). Separ. Purif. Technol. 263, 118401, https://doi.org/10.1016/j.seppur.2021.118401.
|
Ge, T., Shen, L., Li, J., Zhang, Y., Zhang, Y., 2022. Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids Surf. A Physicochem. Eng. Asp. 635, 128069, https://doi.org/10.1016/j.colsurfa.2021.128069.
|
James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K.D., Hyett, G., Jones, W., 2012. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41(1), 413-447.
|
James, S.L., Friscic, T., 2013. Mechanochemistry. Chem. Soc. Rev. 42(18), 7494-7496.
|
Li, J., Nagamani, C., Moore, J.S., 2015. Polymer mechanochemistry: From destructive to productive. Acc. Chem. Res. 48(8), 2181-2190, https://doi.org/10.1021/acs.accounts.5b00184.
|
Li, X., Luo, W., Zhu, K., Chen, Y., Huang, Y., Jin, C., Qiu, R., Luo, S., Guan, G., Yan, K., 2023. Electronic modulation of S and N co-implanted carbon as Fenton-like photocatalysts for water remediation. Chem. Eng. J. 474, 146016, https://doi.org/10.1016/j.cej.2023.146016.
|
Liu, N., Lu, N., Su, Y., Wang, P., Quan, X., 2019. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separ. Purif. Technol. 211, 782-789, https://doi.org/10.1016/j.seppur.2018.10.027.
|
Lou, Z., Song, L., Liu, W., Wu, S., He, F., Yu, J., 2022. Deciphering CaO-induced peroxydisulfate activation for destruction of halogenated organic pollutants in a low energy vibrational mill. Chem. Eng. J. 431, 134090, https://doi.org/10.1016/j.cej.2021.134090.
|
Lu, X., Qiu, W., Peng, J., Xu, H., Wang, D., Cao, Y., Zhang, W., Ma, J., 2021. A review on additives-assisted ultrasound for organic pollutants degradation. J. Hazard Mater. 403, 123915, https://doi.org/10.1016/j.jhazmat.2020.12391.
|
Milh, H., Yu, X., Cabooter, D., Dewil, R., 2021. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci. Total Environ. 764, 144510, https://doi.org/10.1016/j.scitotenv.2020.144510.
|
Moores, A., 2018. Bottom up, solid-phase syntheses of inorganic nanomaterials by mechanochemistry and aging. Curr. Opin. Green Sustainable Chem. 12, 33-37, https://doi.org/10.1016/j.cogsc.2018.05.004.
|
Nasser, A., Mingelgrin, U., 2012. Mechanochemistry: A review of surface reactions and environmental applications. Appl. Clay Sci. 67, 141-150, https://doi.org/10.1016/j.clay.2011.11.018.
|
Perini, L., Silva, B.F., Nogueira, R.P., 2014. Zero-valent iron mediated degradation of ciprofloxacin - assessment of adsorption, operational parameters and degradation products. Chemosphere 117, 345-352, https://doi.org/10.1016/j.chemosphere.2014.07.071.
|
Qiu, W., Vakili, M., Cagnetta, G., Huang, J., Yu, G., 2020. Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. Int. J. Biol. Macromol. 148, 543-549, https://doi.org/10.1016/j.ijbiomac.2020.01.171.
|
Salvatierra, R.V., Domingues, S.H., Oliveira, M.M., Zarbin, A.J., 2013. Tri-layer graphene films produced by mechanochemical exfoliation of graphite. Carbon 57, 410-415, https://doi.org/10.1016/j.carbon.2013.02.013.
|
Shehu, I.S., Adnan, R., Mohd, K.H., 2018. Photocatalytic degradation of ciprofloxacin in aqueous media: A short review. Toxicol. Environ. Chem. 100(5-7), 518-539, https://doi.org/10.1080/02772248.2018.1545128.
|
Sui, H., Rong, Y., Song, J., Zhang, D., Li, H., Wu, P., Shen, Y., Huang, Y., 2018. Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill. J. Hazard Mater. 342, 201-209, https://doi.org/10.1016/j.jhazmat.2017.08.025.
|
Takacs, L., 2013. The historical development of mechanochemistry. Chem. Soc. Rev. 42(18), 7649-7659.
|
Wang, X., Liao, Y., Xiang, Q., Zhang, H., Li, Y., Zhong, Z., 2019. Magnetite/iron foil as an effective and nonfiltration catalyst for heterogeneous Fenton-like reactions under neutral conditions. Inorg. Chem. 58(8), 4718-4721, https://doi.org/10.1021/acs.inorgchem.9b00546.
|
Wang, X., Yin, K., Cao, T., Liao, Y., Wang, Z., Kou, Q., Cheng, D., 2021. Effects of Bi2O3-V2O5 mixture on microstructure and magnetic properties for Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrites sintered at low temperatures. J. Alloys Compd. 885, 160983, https://doi.org/10.1016/j.jallcom.2021.160983.
|
Wen, J., Niu, G., Zhang, L., Liang, C., Guo, H., Zeng, G., 2018. Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2-Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight. J. Catal. 358, 141-154, https://doi.org/10.1016/j.jcat.2017.11.029.
|
Zhang, K., Huang, J., Wang, H., Liu, K., Yu, G., Deng, S., Wang, B., 2014. Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere 116, 40-45, https://doi.org/10.1016/j.chemosphere.2014.02.006.
|
Zhu, K., Qin, W., Gan, Y., Huang, Y., Jiang, Z., Chen, Y., Li, X., Yan, K., 2023. Acceleration of Fe3+/Fe2+ cycle in garland-like MIL-101(Fe)/MoS2 nanosheets to promote peroxymonosulfate activation for sulfamethoxazole degradation. Chem. Eng. J. 470, 144190, https://doi.org/10.1016/j.cej.2023.144190.
|