Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Bukke Vani, Mannem Hymavathi, Swayampakula Kalyani, Nivedita Sahu, Sundergopal Sridhar. 2025: Effective removal of fluoride and arsenic from groundwater via integrated biosorption and membrane ultrafiltration. Water Science and Engineering, 18(1): 30-40. doi: 10.1016/j.wse.2024.04.001
Citation: Bukke Vani, Mannem Hymavathi, Swayampakula Kalyani, Nivedita Sahu, Sundergopal Sridhar. 2025: Effective removal of fluoride and arsenic from groundwater via integrated biosorption and membrane ultrafiltration. Water Science and Engineering, 18(1): 30-40. doi: 10.1016/j.wse.2024.04.001

Effective removal of fluoride and arsenic from groundwater via integrated biosorption and membrane ultrafiltration

doi: 10.1016/j.wse.2024.04.001
  • Received Date: 2023-07-27
  • Accepted Date: 2024-03-27
  • Available Online: 2025-03-05
  • Fluoride (F-) and arsenic, present as As(III) and As(V), are widespread toxins in groundwater across India, as well as in other countries or regions like Pakistan, China, Kenya, Africa, Thailand, and Latin America. Their presence in water resources poses significant environmental and health risks, including fluorosis and arsenicosis. To address this issue, this study developed an integrated process combining biosorbents and ultrafiltration (UF) for the removal of F-, As, and turbidity from contaminated water. Laboratory-scale adsorption experiments were conducted using low-cost biosorbents with different biosorbent dosages, specifically Moringa oleifera seed powder (MSP) and sorghum bicolor husk (SBH), along with sand as a binding medium. F- and As concentrations ranging from 2 to 10 mg/L and 3 to 12 mg/L, respectively, were investigated. Biosorbents and their different combinations were tested to determine their efficacy in removing dissolved F- and As. The results showed that a blend of 10-g/L MSP with SBH achieved the highest F- (97.20%) and As (78.63%) removal efficiencies. Subsequent treatment with a UF membrane effectively reduced turbidity and colloidal impurities in the treated water, achieving a maximum turbidity removal efficiency of 95.40%. Equilibrium kinetic and isotherm models were employed to analyze the experimental data, demonstrating good fit. Preliminary cost analysis indicated that the hybrid technology is economically viable and suitable for the separation of hazardous contaminants from aqueous solutions. This study underscores the potential of inexpensive biosorption technologies in providing clean and safe drinking water, particularly in industrial, rural, and urban areas.

     

  • loading
  • Ali, E.N., 2020. Removal of heavy metals from water and wastewater using Moringa oleifera. In: Murillo-Tovar, M.A., Saldarriaga-Norena, H., Saeid, A. (Eds.), Trace Metals in the Environment - New Approaches and Recent Advances. IntechOpen, London https://doi.org/10.5772/intechopen.89769.
    Anwar, F., Rashid, U., 2007. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pakistan J. Bot. 39(5), 1443-1453.
    Arama, P.F., Wagai, S.O., Ogur, J.A., Walter, A.O., Owido, S.O., Mahagayu, C.M., 2011. Harvesting surface rainwater - purification using Moringa oleifera seed extracts and aluminum sulphate. J. Agric. Ext. Rural Dev. 3(6), 102-112.
    Bagheri, A., Abu-Danso, E., Iqbal, J., Bhatnagar, A., 2020. Modified biochar from Moringa seed powder for the removal of diclofenac from aqueous solution. Environ. Sci. Pollut. Res. 27, 7318-7732, https://doi.org/10.1007/s11356-019-06844-x.
    Bang, S., Korfiatis, G.P., Meng, X., 2005. Removal of arsenic from water by zero-valent iron. J. Hazard. Mater. 121(1-3), 61-67, https://doi.org/10.1016/j.jhazmat.2005.01.030.
    Bukke, V., Kalyani, S., Pabba, M., Sridhar, S., 2021. Forward osmosis aided concentration of lycopene carotenoid from watermelon juice. J. Chem. Technol. Biotechnol. 96(7), 1960-1973, https://doi.org/10.1002/jctb.6720.
    Chiban, M., Zerbet, M., Carja, G., Sinan, F., 2012. Application of low-cost adsorbents for arsenic removal: a review. J. Environ. Chem. Ecotoxicol. 4(5), 91-102, https://doi.org/10.5897/jece11.013.
    Ghebremichael, K.A., Gunaratna, K.R., Henriksson, H., Brumer, H., Dalhammar, G., 2005. A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Resour. 39(11), 2338-2344, https://doi.org/10.1016/j.watres.2005.04.012.
    He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L., Liu, J., 2020. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 8(6), 104516, https://doi.org/10.1016/j.jece.2020.104516.
    Jayasuriya, D.M.N.H., Nadarajah, K., 2023. Understanding association between methylene blue dye and biosorbent: Palmyrah sprout casing in adsorption process in aqueous phase. Water Sci. Eng. 16(2), 154-164, https://doi.org/10.1016/j.wse.2022.12.006.
    Khamkure, S., Bustos-Terrones, V., Benitez-Avila, N.J., Cabello-Lugo, M.F., Gamero-Melo, P., Garrido-Hoyos, S.E., Esparza-Schulz, J.M., 2022. Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution. Water Sci. Eng. 15(4), 305-317, https://doi.org/10.1016/j.wse.2022.07.001.
    Kita, G., Skoblewski, P., 2010. Biosorption of heavy metals - modern and cheap method of polluted wastewater treatment. Food Chem. Biotechnol. 74, 99-105.
    Kubovsky, I., Kacikova, D., Kacik, F., 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12(2), 485, https://doi.org/10.3390/polym12020485.
    Lacson, C.F.Z., Lu, M.C., Huang, Y.H., 2021. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management - an overview. J. Clean. Prod. 280, 124236, https://doi.org/10.1016/j.jclepro.2020.124236.
    Mhd Ramle, S.F., Sulaiman, O., Hashim, R., Kosugi, A., Abe, H., Murata, Y., Mori, Y., 2012. Characterization of parenchyma and vascular bundle of oil palm trunk as function of storage time. Lignocellulose 1(1), 33-44.
    Mohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents-a critical review. J. Hazard. Mater. 142(1-2), 1-53, https://doi.org/10.1016/j.jhazmat.2007.01.006.
    Ozsoy, H.D., Kumbur, H., 2006. Adsorption of Cu(II) ions on cotton boll. J. Hazard. Mater. 136(3), 911-916, https://doi.org/10.1016/j.jhazmat.2006.01.035.
    Rao, C.R.N., Karthikeyan, J., 2012. Removal of fluoride from water by adsorption onto lanthanum oxide. Water Air Soil Pollut. 223, 1101-1114, https://doi.org/10.1007/s11270-011-0928-0.
    Ravikumar, K., Sheeja, A.K., 2013. Heavy metal removal from water using Moringa oleifera seed coagulant and double filtration. Int. J. Sci. Eng. Res. 4(5), 10-13.
    Ravikumar, K., Udayakumar, J., 2021. Moringa oleifera gum composite a novel material for heavy metals removal. Int. J. Environ. Anal. Chem. 101(11), 1513-1553, https://doi.org/10.1080/03067319.2019.1686142.
    Salifu, A., Petrusevski, B., Ghebremichael, K., Modestus, L., Buamah, R., Aubry, C., Amy, G.L., 2013. Aluminum (hydr)oxide-coated pumice for fluoride removal from drinking water: Synthesis, equilibrium, kinetics and mechanism. Chem. Eng. J. 228, 63-74, https://doi.org/10.1016/j.cej.2013.04.075.
    Shaji, E., Santosh, M., Sarath, K.V., Pranav, P., Deepchand, V., Divya, B.V., 2021. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 12(3), 101079, https://doi.org/10.1016/j.gsf.2020.08.015.
    Sharma, P., Kumari, P., Srivastava, M.M., Srivastava, S., 2006. Removal of cadmium from aqueous system by shelled Moringa oleifera Lam. seed powder. Bioresour. Technol. 97(2), 299-305, https://doi.org/10.1016/j.biortech.2005.02.034.
    Sharma, S., Bhattacharya, A., 2017. Drinking water contamination and treatment techniques. Appl. Water Sci. 7, 1043-1067, https://doi.org/10.1007/s13201-016-0455-7.
    Subhashini, V., Swamy, A., Krishna, R.H., 2012. Deflouridation from aqueous solutions using alum. Chem. Sci. Trans. 3, 552-559, https://doi.org/10.7598/cst2012.206.
    Talbot, C.J., Bennett, E.M., Cassell, K., Hanes, D.M., Minor, E.C., Paerl, H., Raymond, P.A., Vargas, R., Vidon, P.G., Wollheim, W., et al., 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry 141, 439-461, https://doi.org/10.1007/s10533-018-0449-7.
    Uduakobong, A.E., Augustine, O.I., 2020. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6), 665, https://doi.org/10.3390/pr8060665.
    Ueda Yamaguchi, N., Cusioli, L.F., Quesada, H.B., Camargo, F.M.E., Fagundes-Klen, M.R., Salcedo Vieira, A.M., Gomes, R.G., Vieira, M.F., Bergamasco, R., 2021. A review of Moringa oleifera seeds in water treatment: trends and future challenges. Process Saf. Environ. Protect. 147, 405-420, https://doi.org/10.1016/j.psep.2020.09.044.
    Vani, B., Chandra Sekhar, S., Sahu, N., Sridhar, S., 2021a. Development of a UV coupled indigenous hydrophilized polyamide membrane system for enhanced shelf life of mature coconut water. J. Food Process. Eng. 44(3), e13636, https://doi.org/10.1111/jfpe.13636.
    Vani, B., Shivakumar, M., Kalyani, S., Sridhar, S., 2021b. TiO2 nanoparticles incorporated high-performance polyphenyl sulfone mixed matrix membranes for ultrafiltration of domestic grey water. Iran. Polym. J. (Engl. Ed.) 30, 917-934, https://doi.org/10.1007/s13726-021-00945-6.
    Wang, C., Wang, B., Liu, J., Yu, L., Sun, H., Wu, J., 2012. Adsorption of Cd(II) from acidic aqueous solutions by tourmaline as a novel material. Sci. Bull. 57(24), 3218-3225, https://doi.org/10.1007/s11434-012-5341-6.
    Wu, T.Y., Mohammad, A.W., Jahim, J.M.D., Anuar, N., 2007. Palm oil mill effluent (POME) treatment and bioresources recovery using ultrafiltration membrane: Effect of pressure on membrane fouling. Biochem. Eng. J. 35(3), 309-331, https://doi.org/10.1016/j.bej.2007.01.029.
    Xu, Z., Yu, Y., Yan, L., Yan, W., Jing, C., 2022. Arsenic removal from groundwater using granular chitosan-titanium adsorbent. J. Environ. Sci. 112, 202-209, https://doi.org/10.1016/j.jes.2021.05.028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return