Citation: | Nathalia Silva-Cancino, Fernando Salazar, Ernest Bladé, Marcos Sanz-Ramos. 2025: Influence of breach parameter models on hazard classification of off-stream reservoirs. Water Science and Engineering, 18(1): 102-114. doi: 10.1016/j.wse.2024.05.001 |
Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., Knutsson, S., 2020. Dam safety and dams hazards. J. Earth Sci. Geotech. Eng. 10(6), 23-40.
|
Ahmadisharaf, E., Kalyanapu, A.J., Thames, B.A., Lillywhite, J., 2016. A probabilistic framework for comparison of dam breach parameters and outflow hydrograph generated by different empirical prediction methods. Environ. Model. Software 86, 248-263, https://doi.org/10.1016/j.envsoft.2016.09.022.
|
Alvarez, M., Puertas, J., Pena, E., Bermudez, M., 2017. Two-dimensional dam-break flood analysis in data-scarce regions: The case study of Chipembe Dam, Mozambique. Water 9(6), 432, https://doi.org/10.3390/w9060432.
|
Bello, D., Alcayaga, H., Caamano, D., Pizarro, A., 2022. Influence of dam breach parameter statistical definition on resulting rupture maximum discharge. Water 14(11), 1776, https://doi.org/10.3390/w14111776.
|
Blade, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vazquez-Cendon, E., Dolz, J., Coll, A., 2014. Iber: Tool for numerical simulation of river flow. Rev. Int. Metodos Numericos Calculo Diseno Ing. 30(1), 1-10, https://doi.org/10.1016/j.rimni.2012.07.004.
|
Blade, E., Sanchez-Juny, M., Arbat Bofill, M., Dolz Ripolles, J., 2019. Computational modeling of fine sediment relocation within a dam reservoir by means of artificial flood generation in a reservoir cascade. Water Resour. Res. 55(4), 3156-3170, https://doi.org/10.1029/2018WR024434.
|
Brunner, G.W., 2002. HEC-RAS (River Analysis System). Hydrologic Engineering Center, Davis.
|
Bureau of Reclamation, 1988. Downstream Hazard Classification Guideliness. ACER Tech. Memorandum No. 11. U.S. Bureau of Reclamation, Denver. https://mde.maryland.gov/programs/Water/DamSafety/Documents/Dam-Breach-Analysis/USBR-ACER-TM11-Downstream-Hazard-Classification-Guidelines.pdf.
|
Castillo-Rodriguez, J.T., Needham, J.T., Morales-Torres, A., Escuder-Bueno, I., 2017. A combined risk analysis approach for complex dam-levee systems. Structure and Infrastructure Engineering 13(12), 1624-1638, https://doi.org/10.1080/15732479.2017.1314514.
|
Cea, L., Bermudez, M., Puertas, J., Blade, E., Corestein, G., Escolano, E., Conde, A., Bockelmann-Evans, B., Ahmadian, R., 2016. IberWQ: New simulation tool for 2D water quality modelling in rivers and shallow estuaries. J. Hydroinf. 18(5), 816-830, https://doi.org/10.2166/hydro.2016.235.
|
Central Water Comission (CWC), 2019. Guidelines for Assessing and Managing Risk Associated with Dams. CWC, New Delhi. https://damsafety.cwc.gov.in/ecm-includes/PDFs/Guidelines_on_Risk_Analysis.pdf.
|
Costa, J.E., 1985. reportFloods from Dam Failures. Open-File Report (85-560). U.S. Geological Survey, Denver, https://doi.org/10.3133/ofr85560.
|
Dhiman, S., Patra, K.C., 2019. Studies of dam disaster in India and equations for breach parameter. Nat. Hazards 98(2), 783-807, https://doi.org/10.1007/s11069-019-03731-z.
|
Federal Emergency Management Agency (FEMA), 2013. Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures. FEMA, Washington DC. https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_inundation-mapping-flood-risks.pdf.
|
Froehlich, D.C., 1995a. Peak outflow from breached embankment dam. J. Water Resour. Plann. Manag. 121(1), 90-97, https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90).
|
Froehlich, D.C., 1995b. Embankment dam breach parameter. In: Proceedings of ASCE Conference on Water Resources Engineering. ASCE, New York.
|
Froehlich, D.C., 2008. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 134(12), 1708-1721, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708).
|
Froehlich, D.C., 2016. Empirical model of embankment dam breaching. In: Proccedings of the River Flow 2016. CRC Press, Boca Raton, pp. 1821-1826, https://doi.org/10.1201/9781315644479-285.
|
International Commission on Large Dams (ICOLD), 1998. Dam-Break Flood Analysis - Review and Recommendations. Bulletin No. 111. ICOLD, Paris.
|
International Commission on Large Dams (ICOLD), 2005. Small dams: Design, surveillance and rehabiltation. Bulletin 157. (ICOLD, Paris).
|
International Commission on Large Dams (ICOLD), 2011. Small Dams, Design, Surveillance and Rehabilitation. Ad-HOC Committee on Small Dams (2005-2010). ICOLD, Paris.
|
Isomaki, E., Maijala, T., Regina, T., 2012. Dam Safety Guide (Finland). Kainuu Centre for Economic Development, Transport and the Environment, (Kainuu).
|
MacDonald, T.C., Langridge-Monopolis, J., 1984. Breaching charateristics of dam failures. J. Hydraul. Eng. 110(5), 567-586, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567).
|
Macedo, J., Ramesh, V., Liu, C., Kottke, A., 2022. Evaluating different approaches for the hazard-consistent assessment of the seismic performance of dams. Bull. Seismol. Soc. Am. 112(3), 1710-1726, https://doi.org/10.1785/0120210181.
|
Martinez-Gomariz, E., Barbero, C., Sanchez-Juny, M., Forero-Ortiz, E., Sanz-Ramos, M., 2023. Dams or ponds classification based on a new criterion to assess potential flood damage to roads in case of failure. Nat. Hazards 117(1), 625-653, https://doi.org/10.1007/s11069-023-05875-5.
|
Ministerio de la Presidencia, 2008. Royal Decree 9/2008, of 11 January, Amending the Regulations on the Public Hydraulic Domain, Approved by Royal Decree 849/1986, of 11 April. Ministerio de la Presidencia, Madrid. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-755.
|
Ministerio de Medio Ambiente y Calidad de las Aguas (MMA), 1996. Technical Guide for the Classification of Dams Function of the Potential Risk. MMA, Madrid.
|
Ministerio para la Transicion Ecologica y el reto Demografico (MITECO), 2021. Technical Guide for the Classification of Dams. MITECO, Madrid. https://www.miteco.gob.es/content/dam/miteco/es/agua/publicaciones/guiatecnicaclasificacion_adaptacionants_nov2021_v16_tcm30-533050.pdf.
|
Morris, M., West, M., Hassan, M., 2018. A guide to breach prediction. Dams Reservoirs 28(4), 150-152, https://doi.org/10.1680/jdare.18.00031.
|
Morris, M., Hassan, M., Goff, C., 2021. EMBREA-web: A tool for the simulation of breach through dams and embankments. In: Proceedings of INCOLD 2021 Symposium. INCOLD, (New Delhi).
|
Sanchez, F.J., Lastra, J., 2011. Methodological Guide for the Development of the National System for Flood Zone Cartography. Ministerio de Medio Ambiente, Madrid.
|
Sanz-Ramos, M., Blade, E., Ibars, A., Vericat, D., Ramos-Fuertes, A., 2019. IberHABITAT: Assessment of physical habitat suitability and weighted useable area for fishes. Application in the Eume River. Ribagua 6(2), 158-167, https://doi.org/10.1080/23863781.2019.1664273.
|
Sanz-Ramos, M., Marti-Cardona, B., Blade, E., Seco, I., Amengual, A., Roux, H., Romero, R., 2020. NRCS-CN estimation from onsite and remote sensing data for management of a reservoir in the Eastern Pyrenees. J. Hydrol. Eng. 25(9), 05020022, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979.
|
Sanz-Ramos, M., Blade, E., Gonzalez-Escalona, F., Olivares, G., Aragon-Hernandez, J.L., 2021. Interpreting the Manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models. Water 13(23), 3433, https://doi.org/10.3390/w13233433.
|
Sanz-Ramos, M., Blade, E., Silva-Cancino, N., Salazar, F., Lopez-Gomez, D., Martinez-Gomariz, E., 2023. A probabilistic approach for off-stream reservoir failure flood hazard assessment. Water 15(12), 2202, https://doi.org/10.3390/w15122202.
|
Sattar, A.M.A., 2014. Gene expression models for prediction of dam breach parameters. J. Hydroinf. 16(3), 550-571, https://doi.org/10.2166/hydro.2013.084.
|
Silva-Cancino, N., Salazar Gonzalez, F., Sanz Ramos, M., Blade, E., 2022. A machine learning-based surrogate model for the identification of risk zones due to off-stream reservoir failure. In: Proceedings of the 39th IAHR World Congress (Granada, 2022). IHAR, Granada, pp. 4863-4872, https://doi.org/10.3850/IAHR-39WC2521711920221036.
|
Stein, M., 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143-151, https://doi.org/10.1080/00401706.1987.10488205.
|
Visser, K., Tejral, R., Neilsen, M., 2015. WinDAM C earthen embankment internal erosion analysis software. In: Proceedings of the 3rd Interagency Conference on Sedimentation and Hydrologic Modeling. Advisory Committee on Water Information, Reno. http://acwi.gov/sos/pubs/3rdJFIC/index.html.
|
Von Thun, J.L., Gillette, D.R., 1990. Guidance on Breach Parameters. U.S. Bureau of Reclamation, Dever.
|
Wahl, T.L., 1998. Predicting Embankment Dam Breach Parameters-A Needs Assessment. U.S. Bureau of Reclamation Dam Safety Rep. No. DS0-98-004. U.S. Bureau of Reclamation, Denver.
|
Wahl, T.L., 2004. Uncertainty of predictions of embankment dam breach parameters. J. Hydraul. Eng. 130, 389-397, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(389).
|
Wishart, M.J., Ueda, S., Pisaniello, J.D., Tingey-Holyoak, J.L., Lyon, K.N., Garcia, E.B., 2020. Laying the Foundations: A Global Analysis of Regulatory Frameworks for the Safety of Dams and Downstream Communities. World Bank Group, Washington DC. https://www.snisb.gov.br/Entenda_Mais/publicacoes/a-global-analysis-of-regulatory-frameworks-for-the-safety-of-dams-and-downstream-communities.pdf.
|
Xu, Y., Zhang, L.M., 2009. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenviron. Eng. 135(12), 1957-1970, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.
|
Zhong, Q., Chen, S., Deng, Z., 2017. Numerical model for homogeneous cohesive dam breaching due to overtopping failure. J. Mt. Sci. 14(3), 571-580, https://doi.org/10.1007/s11629-016-3907-5.
|