Volume 18 Issue 1
Mar.  2025
Turn off MathJax
Article Contents
Nathalia Silva-Cancino, Fernando Salazar, Ernest Bladé, Marcos Sanz-Ramos. 2025: Influence of breach parameter models on hazard classification of off-stream reservoirs. Water Science and Engineering, 18(1): 102-114. doi: 10.1016/j.wse.2024.05.001
Citation: Nathalia Silva-Cancino, Fernando Salazar, Ernest Bladé, Marcos Sanz-Ramos. 2025: Influence of breach parameter models on hazard classification of off-stream reservoirs. Water Science and Engineering, 18(1): 102-114. doi: 10.1016/j.wse.2024.05.001

Influence of breach parameter models on hazard classification of off-stream reservoirs

doi: 10.1016/j.wse.2024.05.001
Funds:

This work was supported by the Spanish Ministry of Science, Innovation and Universities through the projects ACROPOLIS (Grant No. RTC2019- 007343-5) and DOLMEN (Grant No. PID2021-122661OB-I00) and the Spanish Ministry of Economy and Competitiveness through the project “Severo Ochoa Programme for Centres of Excellence in R & D” (Grant No. CEX2018-000797-S).

  • Received Date: 2023-11-20
  • Accepted Date: 2024-05-07
  • Available Online: 2025-03-05
  • The classification of dams or off-stream reservoirs concerning potential hazards in the event of failure often involves the use of two-dimensional hydraulic models for computing floodwave effects. These models necessitate defining breach geometry and formation time, for which various parametric models have been proposed. These models yield different values for average breach width, time of failure, and consequently, peak flows, as demonstrated by several researchers. This study analyzed the effect of selecting a breach parametric model on the hydraulic variables, potential damages, and hazard classification of structures. Three common parametric models were compared using a set of synthetic cases and a real off-stream reservoir. Results indicated significant effects of model choice. Material erodibility exerted a significant impact, surpassing that of failure mode. Other factors, such as the Manning coefficient, significantly affected the results. Utilizing an inadequate model or lacking information on dike material can lead to overly conservative or underestimated outcomes, thereby affecting hazard classification.

     

  • loading
  • Adamo, N., Al-Ansari, N., Sissakian, V., Laue, J., Knutsson, S., 2020. Dam safety and dams hazards. J. Earth Sci. Geotech. Eng. 10(6), 23-40.
    Ahmadisharaf, E., Kalyanapu, A.J., Thames, B.A., Lillywhite, J., 2016. A probabilistic framework for comparison of dam breach parameters and outflow hydrograph generated by different empirical prediction methods. Environ. Model. Software 86, 248-263, https://doi.org/10.1016/j.envsoft.2016.09.022.
    Alvarez, M., Puertas, J., Pena, E., Bermudez, M., 2017. Two-dimensional dam-break flood analysis in data-scarce regions: The case study of Chipembe Dam, Mozambique. Water 9(6), 432, https://doi.org/10.3390/w9060432.
    Bello, D., Alcayaga, H., Caamano, D., Pizarro, A., 2022. Influence of dam breach parameter statistical definition on resulting rupture maximum discharge. Water 14(11), 1776, https://doi.org/10.3390/w14111776.
    Blade, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vazquez-Cendon, E., Dolz, J., Coll, A., 2014. Iber: Tool for numerical simulation of river flow. Rev. Int. Metodos Numericos Calculo Diseno Ing. 30(1), 1-10, https://doi.org/10.1016/j.rimni.2012.07.004.
    Blade, E., Sanchez-Juny, M., Arbat Bofill, M., Dolz Ripolles, J., 2019. Computational modeling of fine sediment relocation within a dam reservoir by means of artificial flood generation in a reservoir cascade. Water Resour. Res. 55(4), 3156-3170, https://doi.org/10.1029/2018WR024434.
    Brunner, G.W., 2002. HEC-RAS (River Analysis System). Hydrologic Engineering Center, Davis.
    Bureau of Reclamation, 1988. Downstream Hazard Classification Guideliness. ACER Tech. Memorandum No. 11. U.S. Bureau of Reclamation, Denver. https://mde.maryland.gov/programs/Water/DamSafety/Documents/Dam-Breach-Analysis/USBR-ACER-TM11-Downstream-Hazard-Classification-Guidelines.pdf.
    Castillo-Rodriguez, J.T., Needham, J.T., Morales-Torres, A., Escuder-Bueno, I., 2017. A combined risk analysis approach for complex dam-levee systems. Structure and Infrastructure Engineering 13(12), 1624-1638, https://doi.org/10.1080/15732479.2017.1314514.
    Cea, L., Bermudez, M., Puertas, J., Blade, E., Corestein, G., Escolano, E., Conde, A., Bockelmann-Evans, B., Ahmadian, R., 2016. IberWQ: New simulation tool for 2D water quality modelling in rivers and shallow estuaries. J. Hydroinf. 18(5), 816-830, https://doi.org/10.2166/hydro.2016.235.
    Central Water Comission (CWC), 2019. Guidelines for Assessing and Managing Risk Associated with Dams. CWC, New Delhi. https://damsafety.cwc.gov.in/ecm-includes/PDFs/Guidelines_on_Risk_Analysis.pdf.
    Costa, J.E., 1985. reportFloods from Dam Failures. Open-File Report (85-560). U.S. Geological Survey, Denver, https://doi.org/10.3133/ofr85560.
    Dhiman, S., Patra, K.C., 2019. Studies of dam disaster in India and equations for breach parameter. Nat. Hazards 98(2), 783-807, https://doi.org/10.1007/s11069-019-03731-z.
    Federal Emergency Management Agency (FEMA), 2013. Federal Guidelines for Inundation Mapping of Flood Risks Associated with Dam Incidents and Failures. FEMA, Washington DC. https://www.fema.gov/sites/default/files/2020-08/fema_dam-safety_inundation-mapping-flood-risks.pdf.
    Froehlich, D.C., 1995a. Peak outflow from breached embankment dam. J. Water Resour. Plann. Manag. 121(1), 90-97, https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90).
    Froehlich, D.C., 1995b. Embankment dam breach parameter. In: Proceedings of ASCE Conference on Water Resources Engineering. ASCE, New York.
    Froehlich, D.C., 2008. Embankment dam breach parameters and their uncertainties. J. Hydraul. Eng. 134(12), 1708-1721, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:12(1708).
    Froehlich, D.C., 2016. Empirical model of embankment dam breaching. In: Proccedings of the River Flow 2016. CRC Press, Boca Raton, pp. 1821-1826, https://doi.org/10.1201/9781315644479-285.
    International Commission on Large Dams (ICOLD), 1998. Dam-Break Flood Analysis - Review and Recommendations. Bulletin No. 111. ICOLD, Paris.
    International Commission on Large Dams (ICOLD), 2005. Small dams: Design, surveillance and rehabiltation. Bulletin 157. (ICOLD, Paris).
    International Commission on Large Dams (ICOLD), 2011. Small Dams, Design, Surveillance and Rehabilitation. Ad-HOC Committee on Small Dams (2005-2010). ICOLD, Paris.
    Isomaki, E., Maijala, T., Regina, T., 2012. Dam Safety Guide (Finland). Kainuu Centre for Economic Development, Transport and the Environment, (Kainuu).
    MacDonald, T.C., Langridge-Monopolis, J., 1984. Breaching charateristics of dam failures. J. Hydraul. Eng. 110(5), 567-586, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567).
    Macedo, J., Ramesh, V., Liu, C., Kottke, A., 2022. Evaluating different approaches for the hazard-consistent assessment of the seismic performance of dams. Bull. Seismol. Soc. Am. 112(3), 1710-1726, https://doi.org/10.1785/0120210181.
    Martinez-Gomariz, E., Barbero, C., Sanchez-Juny, M., Forero-Ortiz, E., Sanz-Ramos, M., 2023. Dams or ponds classification based on a new criterion to assess potential flood damage to roads in case of failure. Nat. Hazards 117(1), 625-653, https://doi.org/10.1007/s11069-023-05875-5.
    Ministerio de la Presidencia, 2008. Royal Decree 9/2008, of 11 January, Amending the Regulations on the Public Hydraulic Domain, Approved by Royal Decree 849/1986, of 11 April. Ministerio de la Presidencia, Madrid. https://www.boe.es/buscar/doc.php?id=BOE-A-2008-755.
    Ministerio de Medio Ambiente y Calidad de las Aguas (MMA), 1996. Technical Guide for the Classification of Dams Function of the Potential Risk. MMA, Madrid.
    Ministerio para la Transicion Ecologica y el reto Demografico (MITECO), 2021. Technical Guide for the Classification of Dams. MITECO, Madrid. https://www.miteco.gob.es/content/dam/miteco/es/agua/publicaciones/guiatecnicaclasificacion_adaptacionants_nov2021_v16_tcm30-533050.pdf.
    Morris, M., West, M., Hassan, M., 2018. A guide to breach prediction. Dams Reservoirs 28(4), 150-152, https://doi.org/10.1680/jdare.18.00031.
    Morris, M., Hassan, M., Goff, C., 2021. EMBREA-web: A tool for the simulation of breach through dams and embankments. In: Proceedings of INCOLD 2021 Symposium. INCOLD, (New Delhi).
    Sanchez, F.J., Lastra, J., 2011. Methodological Guide for the Development of the National System for Flood Zone Cartography. Ministerio de Medio Ambiente, Madrid.
    Sanz-Ramos, M., Blade, E., Ibars, A., Vericat, D., Ramos-Fuertes, A., 2019. IberHABITAT: Assessment of physical habitat suitability and weighted useable area for fishes. Application in the Eume River. Ribagua 6(2), 158-167, https://doi.org/10.1080/23863781.2019.1664273.
    Sanz-Ramos, M., Marti-Cardona, B., Blade, E., Seco, I., Amengual, A., Roux, H., Romero, R., 2020. NRCS-CN estimation from onsite and remote sensing data for management of a reservoir in the Eastern Pyrenees. J. Hydrol. Eng. 25(9), 05020022, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979.
    Sanz-Ramos, M., Blade, E., Gonzalez-Escalona, F., Olivares, G., Aragon-Hernandez, J.L., 2021. Interpreting the Manning roughness coefficient in overland flow simulations with coupled hydrological-hydraulic distributed models. Water 13(23), 3433, https://doi.org/10.3390/w13233433.
    Sanz-Ramos, M., Blade, E., Silva-Cancino, N., Salazar, F., Lopez-Gomez, D., Martinez-Gomariz, E., 2023. A probabilistic approach for off-stream reservoir failure flood hazard assessment. Water 15(12), 2202, https://doi.org/10.3390/w15122202.
    Sattar, A.M.A., 2014. Gene expression models for prediction of dam breach parameters. J. Hydroinf. 16(3), 550-571, https://doi.org/10.2166/hydro.2013.084.
    Silva-Cancino, N., Salazar Gonzalez, F., Sanz Ramos, M., Blade, E., 2022. A machine learning-based surrogate model for the identification of risk zones due to off-stream reservoir failure. In: Proceedings of the 39th IAHR World Congress (Granada, 2022). IHAR, Granada, pp. 4863-4872, https://doi.org/10.3850/IAHR-39WC2521711920221036.
    Stein, M., 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143-151, https://doi.org/10.1080/00401706.1987.10488205.
    Visser, K., Tejral, R., Neilsen, M., 2015. WinDAM C earthen embankment internal erosion analysis software. In: Proceedings of the 3rd Interagency Conference on Sedimentation and Hydrologic Modeling. Advisory Committee on Water Information, Reno. http://acwi.gov/sos/pubs/3rdJFIC/index.html.
    Von Thun, J.L., Gillette, D.R., 1990. Guidance on Breach Parameters. U.S. Bureau of Reclamation, Dever.
    Wahl, T.L., 1998. Predicting Embankment Dam Breach Parameters-A Needs Assessment. U.S. Bureau of Reclamation Dam Safety Rep. No. DS0-98-004. U.S. Bureau of Reclamation, Denver.
    Wahl, T.L., 2004. Uncertainty of predictions of embankment dam breach parameters. J. Hydraul. Eng. 130, 389-397, https://doi.org/10.1061/(ASCE)0733-9429(2004)130:5(389).
    Wishart, M.J., Ueda, S., Pisaniello, J.D., Tingey-Holyoak, J.L., Lyon, K.N., Garcia, E.B., 2020. Laying the Foundations: A Global Analysis of Regulatory Frameworks for the Safety of Dams and Downstream Communities. World Bank Group, Washington DC. https://www.snisb.gov.br/Entenda_Mais/publicacoes/a-global-analysis-of-regulatory-frameworks-for-the-safety-of-dams-and-downstream-communities.pdf.
    Xu, Y., Zhang, L.M., 2009. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenviron. Eng. 135(12), 1957-1970, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162.
    Zhong, Q., Chen, S., Deng, Z., 2017. Numerical model for homogeneous cohesive dam breaching due to overtopping failure. J. Mt. Sci. 14(3), 571-580, https://doi.org/10.1007/s11629-016-3907-5.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return