Citation: | Ali Aghazadegan, Ali Shokri. 2025: Three-dimensional numerical simulation of mixing patterns at open channel confluences. Water Science and Engineering, 18(2): 236-246. doi: 10.1016/j.wse.2024.08.001 |
[1] |
Best, J.L., 1988. Sediment transport and bed morphology at river channel confluences. Sedimentology 35(3), 481-498. https://doi.org/10.1111/j.1365-3091.1988.tb00999.x.
|
[2] |
Bouchez, J., Lajeunesse, E., Gaillardet, J., France-Lanord, C., Dutra-Maia, P., Maurice, L., 2010. Turbulent mixing in the Amazon River: The isotopic memory of confluences. Earth and Planetary Science Letters 290(1-2), 37-43. https://doi.org/10.1016/j.epsl.2009.11.054.
|
[3] |
Boyer, C., Roy, A.G., Best, J.L., 2006. Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology. Journal of Geophysical Research: Earth Surface 111(4), 1-22. https://doi.org/10.1029/2005JF000458.
|
[4] |
Bradbrook, K.F., Biron, P.M., Lane, S.N., Richards, K.S., Roy, A.G., 1998. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrological Processes 12(8), 1371-1396. https://doi.org/10.1002/(SICI)1099-1085(19980630)12:8<1371::AID-HYP620>3.0.CO;2-C.
|
[5] |
Bradbrook, K.F., Lane, S.N., Richards, K.S., 2000. Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences. Water Resources Research 36(9), 2731-2746. https://doi.org/10.1029/2000WR900011.
|
[6] |
Canelas, O.B., Ferreira, R.M.L., Guillen-Ludena, S., Alegria, F.C., Cardoso, A.H., 2020. Three-dimensional flow structure at fixed 70° open-channel confluence with bed discordance. Journal of Hydraulic Research 58(3), 434-446. https://doi.org/10.1080/00221686.2019.1596988.
|
[7] |
Canelas, O.B., Ferreira, R.M.L., Cardoso, A.H., 2022. Hydro-morphodynamics of an open-channel confluence with bed discordance at dynamic Equilibrium. Water Resources Research 58(1), e2021WR029631. https://doi.org/10.1029/2021WR029631.
|
[8] |
Chen, X., Zhu, D.Z., Steffler, P.M., 2017. Secondary currents induced mixing at channel confluences. Canadian Journal of Civil Engineering 44(12), 1071-1083. https://doi.org/10.1139/cjce-2016-0228.
|
[9] |
Cheng, Z., Constantinescu, G., 2020. Stratification effects on hydrodynamics and mixing at a river confluence with discordant bed. Environmental Fluid Mechanics 20(4), 843-872. https://doi.org/10.1007/s10652-019-09725-6.
|
[10] |
Cheng, Z., Constantinescu, G., 2022. Shallow mixing interfaces between parallel streams of unequal densities. Journal of Fluid Mechanics 945, A2. https://doi.org/10.1017/jfm.2022.505.
|
[11] |
Constantinescu, G., Koken, M., Zeng, J., 2011a. The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation. Water Resources Research 47(5), W05515. https://doi.org/10.1029/2010WR010114.
|
[12] |
Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., Kirkil, G., 2011b. Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddy-resolving numerical simulation. Water Resources Research 47(5), W05507. https://doi.org/10.1029/2010WR010018.
|
[13] |
Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., 2012. Numerical analysis of the effect of momentum ratio on the dynamics and sediment-entrainment capacity of coherent flow structures at a stream confluence. Journal of Geophysical Research: Earth Surface 117, F04028. https://doi.org/10.1029/2012jf002452.
|
[14] |
Constantinescu, G., 2014. LE of shallow mixing interfaces: A review. Environmental Fluid Mechanics 14(5), 971-996. https://doi.org/10.1007/s10652-013-9303-6.
|
[15] |
De Serres, B., Roy, A.G., Biron, P.M., Best, J.L., 1999. Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology 26(4), 313-315. https://doi.org/10.1016/s0169-555x(98)00064-6.
|
[16] |
Deltares, 2024. Delft3D 3D/2D Modelling Suite for Integral Water Solutions, User Manual. Deltares, Delft.
|
[17] |
Dong, S., Wei, D., Cai, Y., Wang, B., Cheng, T., Zhang, Y., 2023. Experimental and numerical study on the performance and mechanism of a vortex-broken electrocyclone. Chemical Engineering Journal 455, 140758. https://doi.org/10.1016/j.cej.2022.140758.
|
[18] |
Duguay, J., Biron, P., Buffin-Belanger, T., 2022a. Large-scale turbulent mixing at a mesoscale confluence assessed through drone imagery and eddy-resolved modelling. Earth Surface Processes and Landforms 47(1), 345-363. https://doi.org/10.1002/esp.5251.
|
[19] |
Duguay, J., Biron, P.M., Lacey, J., 2022b. Aerial observations and numerical simulations confirm density-driven streamwise vortices at a river confluence. Water Resources Research 58(7), e2021WR031527. https://doi.org/10.1029/2021WR031527.
|
[20] |
Duguay, J.M., Biron, P. M., Lacey, R.W.J., 2023. Density effects on streamwise-orientated vorticity at river confluences: A laboratory investigation. Journal of Fluid Mechanics 973, 1-30. https://doi.org/10.1017/jfm.2023.656.
|
[21] |
Gualtieri, C., Filizola, N., de Oliveira, M., Santos, A.M., Ianniruberto, M., 2018. A field study of the confluence between Negro and Solimoes rivers. Part 1: Hydrodynamics and sediment transport. Comptes Rendus Geoscience 350(1-2), 31-42. https://doi.org/10.1016/j.crte.2017.09.015.
|
[22] |
He, W., Feng, S., Zhang, J., Tang, H., Xiao, Y., Chen, S., Liu, C., 2024. Hydrodynamic characteristics and particle tracking of 90° lateral intakes at an inclined river slope. Water Sci. Eng. 17(2), 197-208. https://doi.org/10.1016/j.wse.2023.11.004.
|
[23] |
Horna-Munoz, D., Constantinescu, G., Rhoads, B., Lewis, Q., Sukhodolov, A., 2020. Density effects at a concordant bed natural river confluence. Water Resources Research 56(4), e2019WR026217. https://doi.org/10.1029/2019WR026217.
|
[24] |
Jiang, C., Constantinescu, G., Yuan, S., Tang, H., 2022. Flow hydrodynamics, density contrast effects and mixing at the confluence between the Yangtze River and the Poyang Lake channel. Environmental Fluid Mechanics 23, 229-257. https://doi.org/10.1007/s10652-022-09848-3.
|
[25] |
Konsoer, K.M., Rhoads, B.L., 2014. Spatial-temporal structure of mixing interface turbulence at two large river confluences. Environmental Fluid Mechanics 14(5), 1043-1070. https://doi.org/10.1007/s10652-013-9304-5.
|
[26] |
Lewis, Q., Rhoads, B., Sukhodolov, A., Constantinescu, G., 2020. Advective lateral transport of streamwise momentum governs mixing at small river confluences. Water Resources Research 56(9), e2019WR026817. https://doi.org/10.1029/2019WR026817.
|
[27] |
Lyubimova, T.P., Lepikhin, A.P., Parshakova, Y.N., Kolchanov, V.Y., Gualtieri, C., Roux, B., Lane, S.N., 2020. A numerical study of the influence of channel-scale secondary circulation on mixing processes downstream of river junctions. Water 12(11), 2969. https://doi.org/10.3390/w12112969.
|
[28] |
Martin-Vide, J.P., Plana-Casado, A., Sambola, A., Capape, S., 2015. Bedload transport in a river confluence. Geomorphology 250, 15-28. https://doi.org/10.1016/j.geomorph.2015.07.050.
|
[29] |
Middleton, L., Ashmore, P., Leduc, P., Sjogren, D., 2019. Rates of planimetric change in a proglacial gravel-bed braided river: Field measurement and physical modelling. Earth Surface Processes and Landforms 44(3), 752-765. https://doi.org/10.1002/esp.4528.
|
[30] |
Nazari-Giglou, A., Jabbari-Sahebari, A., Shakibaeinia, A., Borghei, S.M., 2016. An experimental study of sediment transport in channel confluences. International Journal of Sediment Research 31(1), 87-96. https://doi.org/10.1016/j.ijsrc.2014.08.001.
|
[31] |
Paola, C., 1997. When streams collide. Nature 387(6630), 232-233. https://doi.org/10.1038/387232a0.
|
[32] |
Rhoads, B.L., Kenworthy, S.T., 1999. On secondary circulation, helical motion and Rozovskii-based analysis of time-averaged two-dimensional velocity fields at confluences. Earth Surface Processes and Landforms 24(4), 369-375. https://doi.org/10.1002/(SICI)1096-9837(199904)24:4<369::AID-ESP983>3.0.CO;2-F.
|
[33] |
Rhoads, B.L., Sukhodolov, N., 2001. Field investigation of three-dimensional flow structure. Water Resources Research 37(9), 2393-2410. https://doi.org/10.1029/2001WR000316.
|
[34] |
Riley, J.D., Rhoads, B.L., 2012. Flow structure and channel morphology at a natural confluent meander bend. Geomorphology 163-164, 84-98. https://doi.org/10.1016/j.geomorph.2011.06.011.
|
[35] |
Shakibainia, A., Tabatabai, M.R.M., Zarrati, A.R., 2010. Three-dimensional numerical study of flow structure in channel confluences. Canadian Journal of Civil Engineering 37(5), 772-781. https://doi.org/10.1139/L10-016.
|
[36] |
Shen, X., Li, R., Cai, H., Feng, J., Wan, H., 2022. Characteristics of secondary flow and separation zone with different junction angle and flow ratio at river confluences. Journal of Hydrology 614, 128537. https://doi.org/10.1016/j.jhydrol.2022.128537.
|
[37] |
Shin, J., Lee, S., Park, I., 2023. Influences of momentum ratio on transverse dispersion for intermediate-field mixing downstream of channel confluence. International Journal of Environmental Research and Public Health 20(4), 2776. https://doi.org/10.3390/ijerph20042776.
|
[38] |
Sukhodolov, A.N., Schnauder, I., Uijttewaal, W.S.J., 2010. Dynamics of shallow lateral shear layers: Experimental study in a river with a sandy bed. Water Resources Research 46(11), W11519. https://doi.org/10.1029/2010WR009245.
|
[39] |
Sukhodolov, A.N., Sukhodolova, T.A., 2019. Dynamics of flow at concordant gravel bed river confluences: Effects of junction angle and momentum flux ratio. Journal of Geophysical Research: Earth Surface 124(2), 588-615. https://doi.org/10.1029/2018JF004648.
|
[40] |
Sukhodolov, A.N., Shumilova, O.O., Constantinescu, G.S., Lewis, Q.W., Rhoads, B.L., 2023. Mixing dynamics at river confluences governed by intermodal behaviour. Nature Geoscience 16(1), 89-93. https://doi.org/10.1038/s41561-022-01091-1.
|
[41] |
Taylor, E.H., 1944. Flow characteristics at rectangular open-channel junctions. Transactions of the American Society of Civil Engineers 109(1), 893-902. https://doi.org/10.1061/TACEAT.0005772.
|
[42] |
Van der Mark, C.F., Mosselman, E., 2013. Effects of helical flow in one-dimensional modelling of sediment distribution at river bifurcations. Earth Surface Processes and Landforms 38(5), 502-511. https://doi.org/10.1002/esp.3335.
|
[43] |
Wuppukondur, A., 2018. Review of flow hydrodynamics and sediment transport at open channel confluences. Civil Engineering Research Journal 5(3), 555664. https://doi.org/10.19080/cerj.2018.05.555664.
|
[44] |
Xie, Q., Yang, J., Lundstrom, S., Dai, W., 2018. Understanding morphodynamic changes of a tidal river confluence through field measurements and numerical modeling. Water 10(10), 1424. https://doi.org/10.3390/w10101424.
|
[45] |
Yu, Q., Yuan, S., Rennie, C. D., 2020. Experiments on the morphodynamics of open channel confluences: Implications for the accumulation of contaminated sediments. Journal of Geophysical Research: Earth Surface 125(9), e2019JF005438. https://doi.org/10.1029/2019JF005438.
|
[46] |
Yuan, S., Tang, H., Li, K., Xu, L., Xiao, Y., Gualtieri, C., Rennie, C., Melville, B., 2021. Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resources Research 57(3), e2020WR028284. https://doi.org/10.1029/2020WR028284.
|
[47] |
Yuan, S., Xu, L., Tang, H., Xiao, Y., Gualtieri, C., 2022. The dynamics of river confluences and their effects on the ecology of aquatic environment: A review. Journal of Hydrodynamics 34(1), 1-14. https://doi.org/10.1007/s42241-022-0001-z.
|
[48] |
Yuan, S., Yan, G., Tang, H., Xiao, Y., Rahimi, H., Aye, M.N., Gualtieri, C., 2023. Effects of tributary floodplain on confluence hydrodynamics. Journal of Hydraulic Research 61(4), 552-572. https://doi.org/10.1080/00221686.2023.2231413.
|