Citation: | James Zulfan, Bobby Minola Ginting, Ravi Anthony Tartandyo. 2025: Evaluation of scale effects in physical modeling of combined ogee and sharp-crested weir flow using a 3D CFD model. Water Science and Engineering, 18(2): 225-235. doi: 10.1016/j.wse.2024.11.002 |
[1] |
Aydin, I., Altan-Sakarya, A.B., Sisman, C., 2011. Discharge formula for rectangular sharp-crested weirs. Flow Meas. Instrum. 22(2), 144-151. https://doi.org/10.1016/j.flowmeasinst.2011.01.003.
|
[2] |
Castro-Orgaz, O., Hager, W.H., 2014. Scale effects of round-crested weir flow. J. Hydraul. Res. 52(5), 653-665. https://doi.org/10.1080/00221686.2014.910277.
|
[3] |
Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H., Raad, P.E., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluid Eng. 130(7), 078001. https://doi.org/10.1115/1.2960953.
|
[4] |
Chanson, H., 2009. Turbulent air-water flows in hydraulic structures: Dynamic similarity and scale effects. Environ. Fluid Mech. 9(2), 125-142. https://doi.org/10.1007/s10652-008-9078-3.
|
[5] |
Erpicum, S., Tullis, B.P., Lodomez, M., Archambeau, P., Dewals, B.J., Pirotton, M., 2016. Scale effects in physical piano key weirs models. J. Hydraul. Res. 54(6), 692-698. https://doi.org/10.1080/00221686.2016.1211562.
|
[6] |
Fais, L.M.C.F., Genovez, A.I.B., 2009. Discharge rating curve and scale effects correction in morning glory spillways. In: Zhang, C., Tang, H. (Eds.), Advances in Water Resources and Hydraulic Engineering. Springer, Berlin, pp. 2041-2046. https://doi.org/10.1007/978-3-540-89465-0_350.
|
[7] |
Heller, V., 2011. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 49(3), 293-306. https://doi.org/10.1080/00221686.2011.578914.
|
[8] |
Novak, P., Moffat, A.I.B., Nalluri, C., Narayanan, R., 2007. Hydraulic Structures (4th Edition). CRC Press, London. https://doi.org/10.1201/9781315274898.
|
[9] |
Pedersen, OE., Fleit, G., Pummer, E., Tullis, B. P., Ruther, N., 2018. Reynolds-averaged Navier-Stokes modeling of submerged Ogee weirs. J. Irrigat. Drain. Eng. 144(1), 04017059. https://doi.org/10.1061/(asce)ir.1943-4774.0001266.
|
[10] |
Pfister, M., Mattiace, E., De Cesare, G., Schleiss, A.J., 2013. Scale effects related to the rating curve of cylindrically crested piano key weirs. In: Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G., Schleiss, A.J. (Eds.), Labyrinth and Piano Key Weirs II. CRC Press, Leidon, pp. 73-82.
|
[11] |
Salmasi, F., Abraham J., 2022. Discharge coefficients for ogee spillways. Water Supply 22(5), 5376-5392. https://doi.org/10.2166/ws.2022.129.
|
[12] |
Saneie, M., Sheikh Kazemi, J., Azhdary Moghaddam, M., 2016. Scale effects on the discharge coefficient of ogee spillway with an arc in plan and converging training walls. Civ. Eng. Infrastruct. J. 49(2), 361-374. https://doi.org/10.7508/ceij.2016.02.012.
|
[13] |
Tartandyo, R.A., Ginting, B.M., Zulfan, J., 2023. Scale effects investigation in physical modeling of recirculating shallow flow using large eddy simulation technique. J. Appl. Fluid Mech. 17(1), 43-59. https://doi.org/10.47176/jafm.17.1.1980.
|
[14] |
Torres, C., Borman, D., Matos, J., Neeve, D., 2022. CFD modeling of scale effects on free-surface flow over a labyrinth weir and spillway. J. Hydraul. Eng. 148(7), 4022011. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001989.
|
[15] |
Tullis, B.P., Crookston, B.M., Young, N., 2020. Scale effects in free-flow nonlinear weir head-discharge relationships. J. Hydraul. Eng. 146(2), 04019056. https://doi.org/10.1061/(asce)hy.1943-7900.0001661.
|
[16] |
Wang, H., Chanson, H., 2016. Self-similarity and scale effects in physical modelling of hydraulic jump roller dynamics, air entrainment and turbulent scales. Environ. Fluid Mech. 16(6), 1087-1110. https://doi.org/10.1007/s10652-016-9466-z.
|
[17] |
Zulfan, J., Ginting, B.M., 2021. Investigation of spillway rating curve via theoretical formula, laboratory experiment, and 3D numerical modeling: A case study of the Riam Kiwa dam, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 930, 012030. https://doi.org/10.1088/1755-1315/930/1/012030.
|