Citation: | Lan-ting Zhou, Guan-lin Long, Can-can Hu, Kai Zhang. 2025: Reservoir water level prediction using combined CEEMDAN-FE and RUN-SVM-RBFNN machine learning algorithms. Water Science and Engineering, 18(2): 177-186. doi: 10.1016/j.wse.2025.01.002 |
[1] |
Ahmadianfer, I., Heidar, A.A., Gandomi, A.H., Chu, X.F., Chen, H.L., 2021. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kuta method. Expert Systems with Applications 181,115079. https://doi.org/10.1016/j.eswa.2021.115079.
|
[2] |
Ayzel, G., Kurochkina, L., Abramov, D., Zhuravlev, S., 2021. Development of a regional gridded runoff dataset using long short-term memory (LSTM) networks. Hydrology 8(1), 6. https://doi.org/10.3390/hydrology8010006.
|
[3] |
Behzad, M., Asghari, K., Eazi, M., Maziar, P., 2009. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications 36(4), 7624-7629. https://doi.org/10.1016/j.eswa.2008.09.053.
|
[4] |
Chen, W.T., Wang, Z.Z., Xie, H.B., Yu, W.X., 2007. Characterization of surface EMG signal based on fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(2), 266-272. https://doi.org/10.1109/TNSRE.2007.897025.
|
[5] |
Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20(3), 273-297. https://doi.org/10.1007/BF00994018.
|
[6] |
Gooyong, L., Sangeun, L., Heekyung, P., 2013. Improving applicability of neuro-genetic algorithm to predict short-term water level: A case study. Journal of Hydroinformatics 16(1), 218-230. https://doi.org/10.2166/hydro.2013.011.
|
[7] |
Guo, J.L., Xing, S.Y., Luan, H., Jia, Y.T., 2021. Prediction of time series traffic based on improved LSTM algorithm. Journal of Nanjing University of Information Science & Technology (Natural Science Edition) 13(5), 571-575 (in Chinese). https://doi.org/10.13878/j.cnki.jnuist.2021.05.009.
|
[8] |
Guo, Y., Lai, X.J., 2021. Research on water level prediction of Dongting Lake based on recurrent neural network. Resources and Environment in the Yangtze Basin 30(3), 689-698 (in Chinese).
|
[9] |
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.A., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193.
|
[10] |
Huang, N.E., Wu, Z.H., 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis 1(1), 1-41. https://doi.org/10.1142/S1793536909000047.
|
[11] |
Lai, X.J., Liang, Q.H., Jiang, J.H., Huang, Q., 2014. Impoundment effects of the Three-Gorges-Dam on flow regimes in two China’s largest freshwater lakes. Water Resources Management 28(14), 5111-5124. https://doi.org/10.1007/s11269-014-0797-6.
|
[12] |
Liu, Y.X., Fan, Q.X., Shang, Y.Z., Fan Q.M., Liu, Z.W., 2019. Short-term water level prediction method for hydropower station based on LSTM neural network. Advances in Science and Technology of Water Resources 39(2), 56-60 (in Chinese). https://doi.org/10.3880/j.issn.1006-7647.2019.02.011.
|
[13] |
Lv, Z.J., Yang, J.G., Xiang, Q., Wang, X.L., 2007. Support vector machines for predicting worsted yarn properties. Indian Journal of Fibre & Textile Research 32, 173-178.
|
[14] |
Park, B.J., Choi, J.N., Kim, W.D., Oh, S.K., 2012. Analytic design of information granulation-based fuzzy radial basis function neural networks with the aid of multi-objective particle swarm optimization. International Journal of Intelligent Computing and Cybernetics 5(1), 4-35. https://doi.org/10.1108/17563781211208224.
|
[15] |
Pramanik, N., Panda, R.K., Sen, D., 2010. One dimensional hydrodynamic modeling of river flow using DEM extracted river cross-sections. Water Resources Management 24(5), 835-852. https://doi.org/10.1007/s11269-009-9474-6.
|
[16] |
Sun, W., Trevor, B., 2018. Multiple model combination methods for annual maximum water level prediction during river ice breakup. Hydrological Processes 32, 421-435. https://doi.org/10.1002/hyp.11429.
|
[17] |
Sun, Z.D., Huang, Q., Tom, L., 2015. Distributed hydrological model of the Dongting Lake Basin. Resources and Environment in the Yangtze Basin 24(8), 1299-1304 (in Chinese).
|
[18] |
Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, 2011. A complete ensemble empirical mode decomposition with adaptive noise. In: Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Prague, pp. 4144-4147. https://doi.org/10.1109/ICASSP.2011.5947265.
|
[19] |
Yao, J., Zhang, Q., Ye, X., Zhang, D., Bai, P., 2017. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake. Journal of Hydrology 561, 711-723. https://doi.org/10.1016/j.jhydrol.2018.04.035.
|
[20] |
Yin, W.J., Fan, Z.W., Tangdamrongsub, N., Hu, L.T., Zhang, M.L., 2021. Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE - A case study over the state of Victoria, Australia. Journal of Hydrology 602, 126735. https://doi.org/10.1016/j.jhydrol.2021.126735.
|
[21] |
Zhang, Z.D., Qin, H., Yao, L.Q., Liu, Y.Q., Jiang, Z.Q., 2021. Downstream water level prediction of reservoir based on convolutional neural network and long short-term memory network. Journal of Water Resources Planning and Management 147(9), 04021060. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001432.
|
[22] |
Zhu, Y., Gu, C., Diaconeasa, M.A., 2024. A missing data processing method for dam deformation monitoring data using spatiotemporal clustering and support vector machine model. Water Science and Engineering 17(4), 417-424. https://doi.org/10.1016/j.wse.2024.08.003.
|