Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Nima Ikani, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Shu-yan Zang. 2025: Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers. Water Science and Engineering, 18(2): 247-258. doi: 10.1016/j.wse.2025.01.003
Citation: Nima Ikani, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Shu-yan Zang. 2025: Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers. Water Science and Engineering, 18(2): 247-258. doi: 10.1016/j.wse.2025.01.003

Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers

doi: 10.1016/j.wse.2025.01.003
  • Received Date: 2024-07-29
  • Accepted Date: 2024-12-09
  • Available Online: 2025-06-24
  • In this study, the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally. The simulation utilised the volume of fluid (VOF) model in conjunction with the kɛ method (i.e., for flow turbulence representations), implemented through the ANSYS FLUENT software, to model the free-surface flow. The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter. The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field. However, the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group, which aligned reasonably well with experimental data. In the heavily narrowed spaces between the piers, simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements. These discrepancies diminished away from the regions with intense vortices, indicating that the employed model was capable of simulating relatively less disturbed flow turbulence. Furthermore, velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios (0.15, 0.40, and 0.62) to assess vortex characteristic around the piers. This comparison revealed consistent results between experimental and simulated data. This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems, which is critical for designing stable and sustainable hydraulic structures. Furthermore, the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects, thereby guiding the design and maintenance of sustainable infrastructure.

     

  • loading
  • [1]
    Alemi, M., Pego, J.P., Maia, R., 2019. Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed. Eur. J. Mech. B Fluid 76, 316-331. https://doi.org/10.1016/j.euromechflu.2019.03.011.
    [2]
    Amina, Tanaka, N., 2022. Numerical investigation of 3D flow properties around finite emergent vegetation by using the two-phase volume of fluid (VOF) modeling technique. Fluid 7(5), 175. https://doi.org/10.3390/fluids7050175.
    [3]
    Ataie-Ashtiani, B., Aslani-Kordkandi, A., 2012. Flow field around side-by-side piers with and without a scour hole. Eur. J. Mech. B Fluid 36, 152-166. https://doi.org/10.1016/j.euromechflu.2012.03.007.
    [4]
    Bao, Y., Zhou, D., Huang, C., 2010. Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method. Comput. Fluid 39(5), 882-899. https://doi.org/10.1016/j.compfluid.2010.01.002.
    [5]
    Blanckaert, K., Lemmin, U., 2006. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 44, 3-17. https://doi.org/10.1080/00221686.2006.9521657.
    [6]
    Breuer, M., 2000. A challenging test case for large eddy simulation: High Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21(5), 648-654. https://doi.org/10.1016/S0142-727X(00)00056-4.
    [7]
    Chavan, R., Kumar, B., 2017. Experimental investigation on flow and scour characteristics around tandem piers in sandy channel with downward seepage. J. Mar. Sci. Appl. 16(3), 313-322. https://doi.org/10.1007/s11804-017-1426-6.
    [8]
    Chavan, R., Huai, W., Kumar, B., 2020. Alluvial channel hydrodynamics around tandem piers with downward seepage. Front. Struct. Civ. Eng. 14, 1445-1461. https://doi.org/10.1007/s11709-020-0648-x.
    [9]
    Cheng, Y., Lien, F., Yee, E., Sinclair, R., 2003. A comparison of large eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind Eng. Ind. Aerod. 91(11), 1301-1328. https://doi.org/10.1016/j.jweia.2003.08.001.
    [10]
    Dargahi, B., 1989. The turbulent flow field around a circular cylinder. Exp. Fluid 8, 1-12. https://doi.org/10.1007/BF00203058.
    [11]
    Diaz Lozada, J.M., Garcia, C.M., Scacchi, G., Oberg, K.A., 2021. Dynamic selection of exposure time for turbulent flow measurements. J. Hydraul. Eng. 147, 04021035. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001922.
    [12]
    Discetti, S., Coletti, F., 2018. Volumetric velocimetry for fluid flows. Meas. Sci. Technol. 29, 042001. https://doi.org/10.1088/1361-6501/aaa571.
    [13]
    Ferziger, J.H., Peric, M., Street, R.L., 2002. Computational Methods for Fluid Dynamics. Springer, Berlin, Heidelberg.
    [14]
    Ghaderi, A., Abbasi, S., 2019. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sadhana 44, 216. https://doi.org/10.1007/s12046-019-1196-8.
    [15]
    Hamidi, A., Siadatmouavi, S.M., 2018. Numerical simulation of scour and flow field for different arrangements of two piers using SSIIM model. Ain Shams Eng. J. 9(4), 2415-2426. https://doi.org/10.1016/j.asej.2017.03.012.
    [16]
    Helmi, A.M., Shehata, A.H., 2021. Three-dimensional numerical investigations of the flow pattern and evolution of the horseshoe vortex at a circular pier during the development of a scour hole. Appl. Sci. 11, 6898.
    [17]
    Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.
    [18]
    Hong, J.H., Chiew, Y.M., Lu, J.Y., Lai, J.S., Lin, Y.B., 2012. Houfeng bridge failure in Taiwan. J. Hydraul. Eng. 138(2), 186-198. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000430.
    [19]
    Hu, P., Yu, M., 2023. Experimental study of secondary flow in narrow and sharp open-channel bends. J. Appl. Fluid Mech. 16, 1767-1777. https://doi.org/10.47176/jafm.16.09.1672.
    [20]
    Huang, W., Yang, Q., Xiao, H., 2009. CFD modeling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluid 38(5), 1050-1058. https://doi.org/10.1016/j.compfluid.2008.01.029.
    [21]
    Ikani, N., Pu, J.H., Taha, T., Hanmaiahgarib, P.R., Penna, N., 2023. Bursting phenomenon created by bridge piers group in open channel flow. Environ. Fluid Mech. 23, 125-140. https://doi.org/10.1007/s10652-023-09910-8.
    [22]
    Ikani, N., Pu, J.H., Zang, S., Al-Qadami, E.H.H., Razi, A., 2024. Detailed turbulent structures investigation around piers group induced flow. Exp. Therm. Fluid Sci. 152, 111112. https://doi.org/10.1016/j.expthermflusci.2023.111112.
    [23]
    Jia, Y., Altinakar, M., Guney, M.S., 2018. Three-dimensional numerical simulations of local scouring around bridge piers. J. Hydraul. Res. 56(3), 351-366. https://doi.org/10.1080/00221686.2017.1356389.
    [24]
    Karim, M.F., Tanimoto, K., Hieu, P.D., 2009. Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model. Appl. Math. Model. 33(1), 343-360. https://doi.org/10.1016/j.apm.2007.11.016.
    [25]
    Kim, S.E., Choudhury, D., Patel, B., 1999. Computations of complex turbulent flows using the commercial code FLUENT. In: Salas, M.D., Hefner, J.N., Sakell, L. (Eds.), Modeling Complex Turbulent Flows. Springer, Dordrecht, pp. 259-276.
    [26]
    Lade, A.D., Deshpande, V., Kumar, B., Oliveto, G., 2019. On the morphodynamic alterations around bridge piers under the influence of instream mining. Water 11(8), 1676. https://doi.org/10.3390/w11081676.
    [27]
    Li, D., Muste, M., Wang, X., 2007. Quantification of the bias error induced by velocity gradients. Meas. Sci. Technol. 19, 015402. https://doi.org/10.1088/0957-0233/19/1/015402.
    [28]
    Loli, M., Mitoulis, S.A., Tsatsis, A., Manousakis, J., Kourkoulis, R., Zekkos, D., 2022. Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations. Sci. Total Environ. 822, 153661. https://doi.org/10.1016/j.scitotenv.2022.153661.
    [29]
    Marian, M., Kim, J., Kim, D., 2021. Impact of the sampling duration on the uncertainty of averaged velocity measurements with acoustic instruments. Hydrol. Process. 35, e14125. https://doi.org/10.1002/hyp.14125.
    [30]
    Melville, B.W., Raudkivi, A.J., 1996. Effects of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4), 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203).
    [31]
    Park, H., Hwang, J.H., 2021. A standard criterion for measuring turbulence quantities using the four-receiver acoustic Doppler velocimetry. Front. Mar. Sci. 8, 681265. https://doi.org/10.3389/fmars.2021.681265.
    [32]
    Pedras, M.H., de Lemos, M.J., 2000. On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Tran. 27(2), 211-220. https://doi.org/10.1016/S0735-1933(00)00102-0.
    [33]
    Pourshahbaz, H., Abbasi, S., Pandey, M., Pu, J.H., Taghvaei, P., Tofangdar, N., 2022. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 28(1), 53-61. https://doi.org/10.1080/09715010.2020.1830000.
    [34]
    Prendergast, L.J., Gavin, K., 2014. A review of bridge scour monitoring techniques. J. Rock Mech. Geotech. Eng. 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.
    [35]
    Pu, J.H., Hussan, K., Tait, S.J., 2007. Simulation of turbulent free surface obstructed flow within channels. In: Proceedings of the 32nd IAHR World Congress. IAHR, Venice.
    [36]
    Pu, J.H., Cheng, N.S., Tan, S.K., Shao, S., 2012. Source term treatment of SWEs using surface gradient upwind method. J. Hydraul. Res. 50(2), 145-153. https://doi.org/10.1080/00221686.2011.649838.
    [37]
    Pu, J.H., Shao, S., Huang, Y., 2014. Numerical and experimental turbulence studies on shallow open channel flows. J. Hydroenv. Res. 8(1), 9-19. https://doi.org/10.1016/j.jher.2012.12.001.
    [38]
    Pu, J.H., 2015. Turbulence modelling of shallow water flows using Kolmogorov approach. Comput. Fluid 115, 66-74. https://doi.org/10.1016/j.compfluid.2015.03.010.
    [39]
    Pu, J.H., 2021. Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluid 6(2), 86. https://doi.org/10.3390/fluids6020086.
    [40]
    Qi, H., Zheng, J., Zhang, C., 2020. Numerical simulation of velocity field around two columns of tandem piers of the longitudinal bridge. Fluid 5(1), 32. https://doi.org/10.3390/fluids5010032.
    [41]
    Ramamurthy, A., Qu, J., Vo, D., 2005. Volume of fluid model for an open channel flow problem. Can. J. Civ. Eng. 32(5), 996-1001. https://doi.org/10.1139/l05-038.
    [42]
    Salaheldin, T.M., Imran, J., Chaudhry, M.H., 2004. Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 130(2), 91-100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91).
    [43]
    Song, T., Chiew, Y., 2001. Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). J. Eng. Mech. 127, 219-232. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(219).
    [44]
    Soori, S., Karami, H., 2024. Laboratory study on relative energy loss and backwater rise at bridge piers and abutment. Model. Earth Syst. Env. 10, 1359-1373. https://doi.org/10.1007/s40808-023-01830-2.
    [45]
    Voulgaris, G., Trowbridge, J.H., 1998. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol. 15, 272-289. https://doi.org/10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2.
    [46]
    Yang, Y., Xiong, X., Melville, B.W., Sturm, T.W., 2021. Dynamic morphology in a bridge-contracted compound channel during extreme floods: Effects of abutments, bed-forms and scour countermeasures. J. Hydrol. 594, 125930. https://doi.org/10.1016/j.jhydrol.2020.125930.
    [47]
    Zaid, M., Yazdanfar, Z., Chowdhury, H., Alam, F., 2019. Numerical modeling of flow around a pier mounted in a flat and fixed bed. Energy Proc. 160, 51-59. https://doi.org/10.1016/j.egypro.2019.02.118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return