Citation: | Nima Ikani, Jaan H. Pu, Prashanth Reddy Hanmaiahgari, Bimlesh Kumar, Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Shu-yan Zang. 2025: Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers. Water Science and Engineering, 18(2): 247-258. doi: 10.1016/j.wse.2025.01.003 |
[1] |
Alemi, M., Pego, J.P., Maia, R., 2019. Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed. Eur. J. Mech. B Fluid 76, 316-331. https://doi.org/10.1016/j.euromechflu.2019.03.011.
|
[2] |
Amina, Tanaka, N., 2022. Numerical investigation of 3D flow properties around finite emergent vegetation by using the two-phase volume of fluid (VOF) modeling technique. Fluid 7(5), 175. https://doi.org/10.3390/fluids7050175.
|
[3] |
Ataie-Ashtiani, B., Aslani-Kordkandi, A., 2012. Flow field around side-by-side piers with and without a scour hole. Eur. J. Mech. B Fluid 36, 152-166. https://doi.org/10.1016/j.euromechflu.2012.03.007.
|
[4] |
Bao, Y., Zhou, D., Huang, C., 2010. Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method. Comput. Fluid 39(5), 882-899. https://doi.org/10.1016/j.compfluid.2010.01.002.
|
[5] |
Blanckaert, K., Lemmin, U., 2006. Means of noise reduction in acoustic turbulence measurements. J. Hydraul. Res. 44, 3-17. https://doi.org/10.1080/00221686.2006.9521657.
|
[6] |
Breuer, M., 2000. A challenging test case for large eddy simulation: High Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21(5), 648-654. https://doi.org/10.1016/S0142-727X(00)00056-4.
|
[7] |
Chavan, R., Kumar, B., 2017. Experimental investigation on flow and scour characteristics around tandem piers in sandy channel with downward seepage. J. Mar. Sci. Appl. 16(3), 313-322. https://doi.org/10.1007/s11804-017-1426-6.
|
[8] |
Chavan, R., Huai, W., Kumar, B., 2020. Alluvial channel hydrodynamics around tandem piers with downward seepage. Front. Struct. Civ. Eng. 14, 1445-1461. https://doi.org/10.1007/s11709-020-0648-x.
|
[9] |
Cheng, Y., Lien, F., Yee, E., Sinclair, R., 2003. A comparison of large eddy simulations with a standard k-ε Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind Eng. Ind. Aerod. 91(11), 1301-1328. https://doi.org/10.1016/j.jweia.2003.08.001.
|
[10] |
Dargahi, B., 1989. The turbulent flow field around a circular cylinder. Exp. Fluid 8, 1-12. https://doi.org/10.1007/BF00203058.
|
[11] |
Diaz Lozada, J.M., Garcia, C.M., Scacchi, G., Oberg, K.A., 2021. Dynamic selection of exposure time for turbulent flow measurements. J. Hydraul. Eng. 147, 04021035. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001922.
|
[12] |
Discetti, S., Coletti, F., 2018. Volumetric velocimetry for fluid flows. Meas. Sci. Technol. 29, 042001. https://doi.org/10.1088/1361-6501/aaa571.
|
[13] |
Ferziger, J.H., Peric, M., Street, R.L., 2002. Computational Methods for Fluid Dynamics. Springer, Berlin, Heidelberg.
|
[14] |
Ghaderi, A., Abbasi, S., 2019. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sadhana 44, 216. https://doi.org/10.1007/s12046-019-1196-8.
|
[15] |
Hamidi, A., Siadatmouavi, S.M., 2018. Numerical simulation of scour and flow field for different arrangements of two piers using SSIIM model. Ain Shams Eng. J. 9(4), 2415-2426. https://doi.org/10.1016/j.asej.2017.03.012.
|
[16] |
Helmi, A.M., Shehata, A.H., 2021. Three-dimensional numerical investigations of the flow pattern and evolution of the horseshoe vortex at a circular pier during the development of a scour hole. Appl. Sci. 11, 6898.
|
[17] |
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5.
|
[18] |
Hong, J.H., Chiew, Y.M., Lu, J.Y., Lai, J.S., Lin, Y.B., 2012. Houfeng bridge failure in Taiwan. J. Hydraul. Eng. 138(2), 186-198. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000430.
|
[19] |
Hu, P., Yu, M., 2023. Experimental study of secondary flow in narrow and sharp open-channel bends. J. Appl. Fluid Mech. 16, 1767-1777. https://doi.org/10.47176/jafm.16.09.1672.
|
[20] |
Huang, W., Yang, Q., Xiao, H., 2009. CFD modeling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluid 38(5), 1050-1058. https://doi.org/10.1016/j.compfluid.2008.01.029.
|
[21] |
Ikani, N., Pu, J.H., Taha, T., Hanmaiahgarib, P.R., Penna, N., 2023. Bursting phenomenon created by bridge piers group in open channel flow. Environ. Fluid Mech. 23, 125-140. https://doi.org/10.1007/s10652-023-09910-8.
|
[22] |
Ikani, N., Pu, J.H., Zang, S., Al-Qadami, E.H.H., Razi, A., 2024. Detailed turbulent structures investigation around piers group induced flow. Exp. Therm. Fluid Sci. 152, 111112. https://doi.org/10.1016/j.expthermflusci.2023.111112.
|
[23] |
Jia, Y., Altinakar, M., Guney, M.S., 2018. Three-dimensional numerical simulations of local scouring around bridge piers. J. Hydraul. Res. 56(3), 351-366. https://doi.org/10.1080/00221686.2017.1356389.
|
[24] |
Karim, M.F., Tanimoto, K., Hieu, P.D., 2009. Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model. Appl. Math. Model. 33(1), 343-360. https://doi.org/10.1016/j.apm.2007.11.016.
|
[25] |
Kim, S.E., Choudhury, D., Patel, B., 1999. Computations of complex turbulent flows using the commercial code FLUENT. In: Salas, M.D., Hefner, J.N., Sakell, L. (Eds.), Modeling Complex Turbulent Flows. Springer, Dordrecht, pp. 259-276.
|
[26] |
Lade, A.D., Deshpande, V., Kumar, B., Oliveto, G., 2019. On the morphodynamic alterations around bridge piers under the influence of instream mining. Water 11(8), 1676. https://doi.org/10.3390/w11081676.
|
[27] |
Li, D., Muste, M., Wang, X., 2007. Quantification of the bias error induced by velocity gradients. Meas. Sci. Technol. 19, 015402. https://doi.org/10.1088/0957-0233/19/1/015402.
|
[28] |
Loli, M., Mitoulis, S.A., Tsatsis, A., Manousakis, J., Kourkoulis, R., Zekkos, D., 2022. Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations. Sci. Total Environ. 822, 153661. https://doi.org/10.1016/j.scitotenv.2022.153661.
|
[29] |
Marian, M., Kim, J., Kim, D., 2021. Impact of the sampling duration on the uncertainty of averaged velocity measurements with acoustic instruments. Hydrol. Process. 35, e14125. https://doi.org/10.1002/hyp.14125.
|
[30] |
Melville, B.W., Raudkivi, A.J., 1996. Effects of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4), 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203).
|
[31] |
Park, H., Hwang, J.H., 2021. A standard criterion for measuring turbulence quantities using the four-receiver acoustic Doppler velocimetry. Front. Mar. Sci. 8, 681265. https://doi.org/10.3389/fmars.2021.681265.
|
[32] |
Pedras, M.H., de Lemos, M.J., 2000. On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Tran. 27(2), 211-220. https://doi.org/10.1016/S0735-1933(00)00102-0.
|
[33] |
Pourshahbaz, H., Abbasi, S., Pandey, M., Pu, J.H., Taghvaei, P., Tofangdar, N., 2022. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 28(1), 53-61. https://doi.org/10.1080/09715010.2020.1830000.
|
[34] |
Prendergast, L.J., Gavin, K., 2014. A review of bridge scour monitoring techniques. J. Rock Mech. Geotech. Eng. 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.
|
[35] |
Pu, J.H., Hussan, K., Tait, S.J., 2007. Simulation of turbulent free surface obstructed flow within channels. In: Proceedings of the 32nd IAHR World Congress. IAHR, Venice.
|
[36] |
Pu, J.H., Cheng, N.S., Tan, S.K., Shao, S., 2012. Source term treatment of SWEs using surface gradient upwind method. J. Hydraul. Res. 50(2), 145-153. https://doi.org/10.1080/00221686.2011.649838.
|
[37] |
Pu, J.H., Shao, S., Huang, Y., 2014. Numerical and experimental turbulence studies on shallow open channel flows. J. Hydroenv. Res. 8(1), 9-19. https://doi.org/10.1016/j.jher.2012.12.001.
|
[38] |
Pu, J.H., 2015. Turbulence modelling of shallow water flows using Kolmogorov approach. Comput. Fluid 115, 66-74. https://doi.org/10.1016/j.compfluid.2015.03.010.
|
[39] |
Pu, J.H., 2021. Velocity profile and turbulence structure measurement corrections for sediment transport-induced water-worked bed. Fluid 6(2), 86. https://doi.org/10.3390/fluids6020086.
|
[40] |
Qi, H., Zheng, J., Zhang, C., 2020. Numerical simulation of velocity field around two columns of tandem piers of the longitudinal bridge. Fluid 5(1), 32. https://doi.org/10.3390/fluids5010032.
|
[41] |
Ramamurthy, A., Qu, J., Vo, D., 2005. Volume of fluid model for an open channel flow problem. Can. J. Civ. Eng. 32(5), 996-1001. https://doi.org/10.1139/l05-038.
|
[42] |
Salaheldin, T.M., Imran, J., Chaudhry, M.H., 2004. Numerical modeling of three-dimensional flow field around circular piers. J. Hydraul. Eng. 130(2), 91-100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91).
|
[43] |
Song, T., Chiew, Y., 2001. Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). J. Eng. Mech. 127, 219-232. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(219).
|
[44] |
Soori, S., Karami, H., 2024. Laboratory study on relative energy loss and backwater rise at bridge piers and abutment. Model. Earth Syst. Env. 10, 1359-1373. https://doi.org/10.1007/s40808-023-01830-2.
|
[45] |
Voulgaris, G., Trowbridge, J.H., 1998. Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J. Atmos. Ocean. Technol. 15, 272-289. https://doi.org/10.1175/1520-0426(1998)015<0272:EOTADV>2.0.CO;2.
|
[46] |
Yang, Y., Xiong, X., Melville, B.W., Sturm, T.W., 2021. Dynamic morphology in a bridge-contracted compound channel during extreme floods: Effects of abutments, bed-forms and scour countermeasures. J. Hydrol. 594, 125930. https://doi.org/10.1016/j.jhydrol.2020.125930.
|
[47] |
Zaid, M., Yazdanfar, Z., Chowdhury, H., Alam, F., 2019. Numerical modeling of flow around a pier mounted in a flat and fixed bed. Energy Proc. 160, 51-59. https://doi.org/10.1016/j.egypro.2019.02.118.
|