Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Himani Taneja, Shamas Tabraiz, Asma Ahmed. 2025: Optimising a novel biofilm-based process using Neurospora discreta for enhanced treatment of lignin-rich wastewater. Water Science and Engineering, 18(2): 141-150. doi: 10.1016/j.wse.2025.02.001
Citation: Himani Taneja, Shamas Tabraiz, Asma Ahmed. 2025: Optimising a novel biofilm-based process using Neurospora discreta for enhanced treatment of lignin-rich wastewater. Water Science and Engineering, 18(2): 141-150. doi: 10.1016/j.wse.2025.02.001

Optimising a novel biofilm-based process using Neurospora discreta for enhanced treatment of lignin-rich wastewater

doi: 10.1016/j.wse.2025.02.001
Funds:

This work was supported by the Leverhulme Trust Research Project (Grant No. RPG-2020-021).

  • Received Date: 2024-09-19
  • Accepted Date: 2025-01-27
  • Available Online: 2025-06-24
  • Paper and pulp mills generate substantial volumes of wastewater containing lignin-derived compounds that are challenging to degrade using conventional wastewater treatment methods. This study presents a novel biofilm-based process for enhanced lignin removal in wastewater using the fungus Neurospora discreta, which effectively degrades lignin and forms robust biofilms at the air–liquid interface under specific conditions. The process was optimised using the Taguchi design of experiments approach, and three factors including pH, copper sulphate concentration, and trace element concentration were evaluated at three levels. Experimental data were analysed against three responses: lignin degradation efficiency and the activities of two ligninolytic enzymes (polyphenol oxidase and versatile peroxidase). The results indicated that wastewater pH was the most significant parameter affecting lignin degradation efficiency and enzyme activities. Over 70% lignin degradation was achieved at pH levels of 5 and 6 with copper sulphate concentrations above 4 mg/L, while degradation efficiency drastically dropped to 45% at a pH value of 7. Reversed-phase high-performance liquid chromatography analysis demonstrated the effects of the three factors on the polar and non-polar components of lignin in wastewater, revealing a clear decrease in all peak areas after treatment. Additionally, significant relationships were observed between biofilm properties (including porosity, water retention value, polysaccharide content, and protein content) and lignin removal efficiency. This study also reported for the first time the presence of versatile peroxidase, a ligninolytic enzyme, in Neurospora sp.

     

  • loading
  • [1]
    Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11(7), 36.
    [2]
    Ahmed, A., Narayanan, R.A., Veni, A.R., 2020. Influence of carbon source complexity on porosity, water retention and extracellular matrix composition of Neurospora discreta biofilms. Journal of Applied Microbiology 128(4), 1099-1108. https://doi.org/10.1111/jam.14539.
    [3]
    Ascacio-Valdes, J.A., Buenrostro, J.J., De la Cruz, R., Sepulveda, L., Aguilera, A.F., Prado, A., Contreras, J.C., Rodriguez, R., Aguilar, C.N., 2014. Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology 54(1), 28-34. https://doi.org/10.1002/jobm.201200278.
    [4]
    Baldrian, P., 2006. Fungal laccases - occurrence and properties. FEMS Microbiology Reviews 30(2), 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x.
    [5]
    Bending, G.D., Read, D.J., 1997. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycological Research 101(11), 1348-1354. https://doi.org/10.1017/S0953756297004140.
    [6]
    Bourbonnais, R., Leech, D., Paice, M.G., 1998. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA) - General Subjects 1379(2), 381-390. https://doi.org/10.1016/S0304-4165(97)00117-7.
    [7]
    Christov, L., van Driessel, B., 2003. Waste water bioremediation in the pulp and paper industry. Indian Journal of Biotechnology 2(3), 444-450.
    [8]
    Flemming, H.C., Wingender, J., 2010. The biofilm matrix. Nature Reviews Microbiology 8(9), 623-633. https://doi.org/10.1038/nrmicro2415.
    [9]
    Garg, S.K., Modi, D.R., 1999. Decolorization of pulp-paper mill effluents by white-rot fungi. Critical Reviews in Biotechnology 19(2), 85-112. https://doi.org/10.1080/0738-859991229206.
    [10]
    Gomes, I.B., Simoes, M., Simoes, L.C., 2020. Copper surfaces in biofilm control. Nanomaterials 10(12), 2491. https://doi.org/10.3390/nano10122491.
    [11]
    Goncalves, C., Rodriguez-Jasso, R.M., Gomes, N., Teixeira, J.A., Belo, I., 2010. Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods 2, 2046-2048. https://doi.org/10.1039/C0AY00525H.
    [12]
    Heinzkill, M., Bech, L., Halkier, T., Schneider, P., Anke, T., 1998. Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Applied and Environmental Microbiology 64, 1601-1606. https://doi.org/10.1128/aem.64.5.1601-1606.1998.
    [13]
    Huang, L., Wang, M.J., 1995. Image thresholding by minimizing the measures of fuzziness. Pattern Recognition 28(1), 41-51. https://doi.org/10.1016/0031-3203(94)E0043-K.
    [14]
    Hutchins, F.F., 1979. Toxicity of Pulp and Paper Mill Effluent: A Literature Review. U. S. Environmental Protection Agency, Washington DC.
    [15]
    Knop, D., Yarden, O., Hadar, Y., 2015. Ligninolytic peroxidases in the genus Pleurotus: Divergence in activities, expression, and potential applications. Applied Microbiology and Biotechnology 99(3), 1025-1038. https://doi.org/10.1007/s00253-014-6256-8.
    [16]
    Levin, L., Forchiassin, F., Ramos, A.M., 2002. Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia 94(3), 377-383. https://doi.org/10.1080/15572536.2003.11833202.
    [17]
    Luke, A.K., Burton, S.G., 2001. A novel application for Neurospora crassa: Progress from batch culture to a membrane bioreactor for the bioremediation of phenols. Enzyme and Microbial Technology 29(6-7), 348-356. https://doi.org/10.1016/S0141-0229(01)00390-8.
    [18]
    Mishra, S., Huang, Y., Li, J., Wu, X., Zhou, Z., Lei, Q., Bhatt, P., Chen, S., 2022. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere 294, 133609. https://doi.org/10.1016/j.chemosphere.2022.133609.
    [19]
    Moshtaghioun, S.M., Dadkhah, M., Bahremandjo, K., Haghbeen, K., Aminzadeh, S., Legge, R.L., 2017. Optimization of simultaneous production of tyrosinase and laccase by Neurospora crassa. Biocatalysis and Biotransformation 35(1), 1-10. https://doi.org/10.1080/10242422.2016.1266617.
    [20]
    Nandal, P., Ravella, S.R., Kuhad, R.C., 2013. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology. Scientific Reports 3(1), 1386. https://doi.org/10.1038/srep01386.
    [21]
    Norgren, M., Edlund, H., 2014. Lignin: Recent advances and emerging applications. Current Opinion on Colloidal and Interface Science 19(5), 409-416. https://doi.org/10.1016/j.cocis.2014.08.004.
    [22]
    Oikari, A.O., Nakari, T., 1982. Kraft pulp mill effluent components cause liver dysfunction in trout. Bulletin of Environmental Contamination and Toxicology 28, 266-270. https://doi.org/10.1007/BF01608505.
    [23]
    Palmieri, G., Giardina, P., Marzullo, L., Desiderio, B., Nitti, G., Cannio, R., Sannia, G., 1993. Stability and activity of a phenol oxidase from the ligninolytic fungus Pleurotus ostreatus. Applied Microbiology and Biotechnology 39, 632-636. https://doi.org/10.1007/BF00205066.
    [24]
    Pamidipati, S., Ahmed, A., 2017. Degradation of lignin in agricultural residues by locally isolated fungus Neurospora discreta. Applied Biochemistry and Biotechnology 181, 1561-1572. https://doi.org/10.1007/s12010-016-2302-6.
    [25]
    Pamidipati, S., Ahmed, A., 2020. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Folia Microbiologica 65, 431-437. https://doi.org/10.1007/s12223-019-00765-5.
    [26]
    Papagianni, M., 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances 22(3), 189-259. https://doi.org/10.1016/j.biotechadv.2003.09.005.
    [27]
    Parveen, S., Ali, M.I., Aslam, M., Ali, I., Jamal, A., Al-Ansari, M.M., Al-Humaid, L., Urynowicz, M., Huang, Z., 2022. Optimizing biocatalytic potential of Dipodascus australiensis M-2 for degrading lignin under laboratory conditions. Microbiological Research 265, 127179. https://doi.org/10.1016/j.micres.2022.127179.
    [28]
    Prasad, K.K., Mohan, S.V., Rao, R.S., Pati, B.R., Sarma, P.N., 2005. Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology. Biochemical Engineering Journal 24(1), 17-26. https://doi.org/10.1016/j.bej.2005.01.019.
    [29]
    Radjenovic, J., Matosic, M., Mijatovic, I., Petrovic, M., Barcelo, D., 2015. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Barcelo, D., Petrovic, M. (Eds.), Emerging Contaminants from Industrial and Municipal Waste. Springer, Berlin, Heidelberg, pp. 37-101. https://doi.org/10.1007/978-3-540-79210-9_2.
    [30]
    Rajesh, J., Kavitha, S., Yukesh Kannah, R., Poornima Devi, T., Gunasekaran, M., Kim, S., Kumar, G., 2019. A review on biopolymer production via lignin valorization. Bioresource Technology 290, 121790. https://doi.org/10.1016/j.biortech.2019.121790.
    [31]
    Ravichandran, A., Rao, R.G., Thammaiah, V., Gopinath, S.M., Sridhar, M., 2018. A novel versatile peroxidase from Lentinus squarrosulus towards enhanced delignification and in vitro digestibility of crop residues. BioResources 14(3), 5132-5149. https://doi.org/10.15376/biores.14.3.5132-5149.
    [32]
    Rousk, J., Brookes, P.C., Baath, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology 75(6), 1589-1596. https://doi.org/10.1128/AEM.02775-08.
    [33]
    Saito, T., Hong, P., Kato, K., Okazaki, M., Inagaki, H., Maeda, S., Yokogawa, Y., 2003. Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme and Microbial Technology 33(4), 520-526. https://doi.org/10.1016/S0141-0229(03)00158-3.
    [34]
    Singh, A.K., Bilal, M., Iqbal, H.M.N., Raj, A., 2021. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. International Journal of Biological Macromolecules 177, 58-82. https://doi.org/10.1016/j.ijbiomac.2021.02.032.
    [35]
    Sridhar, M., 2016. Versatile peroxidases: Super peroxidases with potential biotechnological applications - A mini review. Journal of Dairy, Veterinary & Animal Research 4(2), 277-280. https://doi.org/10.15406/jdvar.2016.04.00116.
    [36]
    Srivastava, V.C., Mall, I.D., Mishra, I.M., 2005. Treatment of pulp and paper mill wastewaters with poly aluminium chloride and bagasse fly ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects 260(1), 17-28. https://doi.org/10.1016/j.colsurfa.2005.02.027.
    [37]
    Sun, R., Tomkinson, J., Bolton, J., 1999. Separation and characterization of lignins from the black liquor of oil palm trunk fiber pulping. Separation Science and Technology 34(15), 3045-3058. https://doi.org/10.1081/SS-100100821.
    [38]
    Taboada-Puig, R., Lu-Chau, T., Moreira, M.T., Feijoo, G., Martinez, M.J., Lema, J.M., 2011. A new strain of Bjerkandera sp. production, purification and characterization of versatile peroxidase. World Journal of Microbiology and Biotechnology 27(1), 115-122. https://doi.org/10.1007/s11274-010-0435-2.
    [39]
    Tabraiz, S., Aiswarya, N.M., Taneja, H., Narayanan, R.A., Ahmed, A., 2022. Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta. Journal of Environmental Management 324, 116363. https://doi.org/10.1016/j.jenvman.2022.116363.
    [40]
    Taneja, H., 2023. The Development and Optimisation of a Lab-Scale Process for Biological Treatment of Lignin-Rich Wastewater Using Biofilms Formed by Neurospora discreta. PhD Dissertation. Canterbury Christ Church University, Christ Church. https://repository.canterbury.ac.uk/item/978y9/the-development-and-optimisation-of-a-lab-scale-process-for-biological-treatment-of-lignin-rich-wastewater-using-biofilms-formed-by-nuerospora-discreta.
    [41]
    Thompson, G., Swain, J., Kay, M., Forster, C.F., 2001. The treatment of pulp and paper mill effluent: A review. Bioresource Technology 77, 275-286. https://doi.org/10.1016/S0960-8524(00)00060-2.
    [42]
    Vargas-Straube, M.J., Beard, S., Norambuena, R., Paradela, A., Vera, M., Jerez, C.A., 2020. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur. Journal of Proteomics 225, 103874. https://doi.org/10.1016/j.jprot.2020.103874.
    [43]
    Vashi, H., Iorhemen, O.T., Tay, J.H., 2018. Degradation of industrial tannin and lignin from pulp mill effluent by aerobic granular sludge technology. Journal of Water Process Engineering 26, 38-45. https://doi.org/10.1016/j.jwpe.2018.09.002.
    [44]
    Viswanath, B., Rajesh, B., Janardhan, A., Kumar, A.P., Narasimha, G., 2014. Fungal laccases and their applications in bioremediation. Enzyme Research 2014, 163242. https://doi.org/10.1155/2014/163242.
    [45]
    Vogel, H.J., 1964. Distribution of lysine pathways among fungi: Evolutionary implications. The American Naturalist 98(903), 435-446. https://doi.org/10.1086/282338.
    [46]
    Yadav, S., Tripathi, S., Purchase, D., Chandra, R., 2023. Development of a biofilm-forming bacterial consortium and quorum sensing molecules for the degradation of lignin-containing organic pollutants. Environmental Research 226, 115618. https://doi.org/10.1016/j.envres.2023.115618.
    [47]
    Yoruk, R., Marshall, M.R., 2003. Physicochemical properties and function of plant polyphenol oxidase polyphenol oxidase: A review. Journal of Food Biochemistry 27, 361-422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x.
    [48]
    Zheng, Y., Song, H., Chen, Q., Hou, Y., Zhang, X., Han, S., 2023. Comparing biofilm reactors inoculated with Shewanella for decolorization of Reactive Black 5 using different carrier materials. Biotechnology Journal 19(1), 2300299. https://doi.org/10.1002/biot.202300299.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (12) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return