Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Kingsley Safo, Norbert Onen Rubangakene, Hussien Noby, Ahmed H. El-Shazly. 2025: Photocatalytic purification of dye-containing wastewater using a novel embedded hybrid TiO2–slag catalyst heterojunction nanocomposite coupled with statistical models: A sustainable and techno-economic approach. Water Science and Engineering, 18(2): 151-164. doi: 10.1016/j.wse.2025.02.003
Citation: Kingsley Safo, Norbert Onen Rubangakene, Hussien Noby, Ahmed H. El-Shazly. 2025: Photocatalytic purification of dye-containing wastewater using a novel embedded hybrid TiO2–slag catalyst heterojunction nanocomposite coupled with statistical models: A sustainable and techno-economic approach. Water Science and Engineering, 18(2): 151-164. doi: 10.1016/j.wse.2025.02.003

Photocatalytic purification of dye-containing wastewater using a novel embedded hybrid TiO2–slag catalyst heterojunction nanocomposite coupled with statistical models: A sustainable and techno-economic approach

doi: 10.1016/j.wse.2025.02.003
Funds:

This work was supported by the Department of Chemical and Petrochemical Engineering, Egypt-Japan University of Science and Technology.

  • Received Date: 2024-08-06
  • Accepted Date: 2025-01-06
  • Available Online: 2025-06-24
  • The steel industry produces many byproducts, requiring extensive land for storage and causing significant environmental contamination. Industrial effluents discharged into water bodies negatively impact both aquatic ecosystems and human health. To solve this problem, this study synthesized a composite of titanium dioxide (TiO2) and steel slag nanocomposites (SSNC) at a 1:2 mass ratio to create a robust photocatalyst for the treatment of synthetic wastewater. The efficacy of this catalyst in degrading various dye pollutants, including methylene blue (MB), was tested under simulated solar light conditions. Comprehensive analyses were conducted to assess the physical and chemical characteristics, crystalline structure, energy gap, and point of zero charge of the composite. The TiO2-SSNC composite catalyst exhibited excellent stability, with a point of zero charge at 8.342 and an energy gap of 2.4 eV. The degradation process conformed to pseudo-first-order kinetics. Optimization of operational parameters was achieved through the response surface methodology. Reusability tests demonstrated that the TiO2-SSNC composite catalyst effectively degraded up to 93.41% of MB in the suspended mode and 92.03% in the coated mode after five cycles. Additionally, the degradation efficiencies for various dyes were significant, highlighting the potential of the composite for broad applications in industrial wastewater treatment. This study also explored the degradation mechanisms and identified byproducts, establishing a pathway for contaminant breakdown. The cost-benefit analysis revealed a total cost of 0.842 8 USD per cubic meter for each treatment activity, indicating low operational and production costs. These findings underscore the promise of the TiO2-SSNC composite as a cost-effective and efficient alternative for wastewater purification.

     

  • loading
  • [1]
    Abbas, N., Shao, G.N., Haider, M.S., Imran, S.M., Park, S.S., Kim, H.T., 2016. Sol-gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 39, 112-120. https://doi.org/10.1016/j.jiec.2016.05.015.
    [2]
    Abdellah, M.H., Nosier, S.A., El-Shazly, A.H., Mubarak, A.A., 2018. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alexandria Engineering Journal 57, 3727-3735. https://doi.org/10.1016/j.aej.2018.07.018.
    [3]
    Ali, A.S., Khan, I., Zhang, B., Nomura, K., Homonnay, Z., Kuzmann, E., Scrimshire, A., Bingham, P.A., Krehula, S., Music, S., et al., 2020. Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light. J. Radioanal. Nucl. Chem. 325, 537-549. https://doi.org/10.1007/s10967-020-07238-x.
    [4]
    Ananpattarachai, J., Kajitvichyanukul, P., Seraphin, S., 2009. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168, 253-261. https://doi.org/10.1016/j.jhazmat.2009.02.036.
    [5]
    Behnajady, M.A., Modirshahla, N., Mirzamohammady, M., Vahid, B., Behnajady, B., 2008. Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater. 160, 508-513. https://doi.org/10.1016/j.jhazmat.2008.03.049.
    [6]
    Cao, X., Luo, S., Liu, C., Chen, J., 2017. Synthesis of bentonite-supported Fe2O3-doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability. Adv. Powder Technol. 28(3), 993-999. https://doi.org/10.1016/j.apt.2017.01.003.
    [7]
    Cao, Y.Q., Zi, T.Q., Zhao, X.R., Liu, C., Ren, Q., Fang, J.B., Li, W.M., Li, A.D., 2020. Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition. Sci. Rep. 10, 13437. https://doi.org/10.1038/s41598-020-70352-z.
    [8]
    Cen, L., Tang, T., Yu, F., Wu, H., Li, C., Zhu, H., Guo, Y., 2023. Fabrication of ZIF-8/TiO2 electrospinning nanofibers for synergistic photodegradation in dyeing wastewater. J. Ind. Eng. Chem. 126, 537-545. https://doi.org/10.1016/j.jiec.2023.06.042.
    [9]
    Demarema, S., Nasr, M., Ookawara, S., Abdelhaleem, A., 2024. Enhanced synergistic system for the persulfate activation under visible light using novel N-ZnO photocatalyst supported on Lantana camara-based biochar. Chemosphere 349, 140840. https://doi.org/10.1016/j.chemosphere.2023.140840.
    [10]
    Gar Alalm, M., Samy, M., Ookawara, S., Ohno, T., 2018. Immobilization of S-TiO2 on reusable aluminum plates by polysiloxane for photocatalytic degradation of 2,4-dichlorophenol in water. J. Water Process Eng. 26, 329-335. https://doi.org/10.1016/j.jwpe.2018.11.001.
    [11]
    Gaya, U.I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9(1), 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
    [12]
    Hussain, H.M., Fiaz, M., Athar, M., 2021. Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies. J. Iran. Chem. Soc. 18, 1269-1277. https://doi.org/10.1007/s13738-020-02109-4.
    [13]
    Jatoi, Y.F., Fiaz, M., Athar, M., 2021. Synthesis of efficient TiO2/Al2O3@Cu(BDC) composite for water splitting and photodegradation of methylene blue. J. Aust. Ceram. Soc. 57, 489-496. https://doi.org/10.1007/s41779-020-00548-z.
    [14]
    Khataee, A.R., Pons, M.N., Zahraa, O., 2009. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J. Hazard. Mater. 168, 451-457. https://doi.org/10.1016/j.jhazmat.2009.02.052.
    [15]
    Lin, Y., L., Kurniawan, T.A., Ying, Z., Albadarin, A.B., Walker, G., 2017. Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV-VIS irradiation. J. Mol. Liq. 243, 761-770. https://doi.org/10.1016/j.molliq.2017.08.092.
    [16]
    Liu, L., Liu, Y., Wang, X., Hu, N., Li, Y., Li, C., Meng, Y., An, Y., 2021. Synergistic effect of B-TiO2 and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation. Appl. Surf. Sci. 561, 149969. https://doi.org/10.1016/j.apsusc.2021.149969.
    [17]
    Mensah, K., Shokry, H., Elkady, M., Hawash, H.B., Samy, M., 2024. Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Sci. Eng. 17(3), 226-235. https://doi.org/10.1016/j.wse.2024.01.005.
    [18]
    Nguyen, C.H., Fu, C.C., Juang, R.S., 2018. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 202, 413-427. https://doi.org/10.1016/j.jclepro.2018.08.110.
    [19]
    Onen, N., Elwardany, A., Fujii, M., 2023. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem. Eng. Res. Des. 189, 636-651. https://doi.org/10.1016/j.cherd.2022.12.003.
    [20]
    Ramadhan, M., Pradipta, A.R., Kunarti, E.S., 2017. Synthesis of Fe3O4/TiO2-Co nanocomposite as model of photocatalyst with magnetic properties. Materials Science Forum 901, 14-19. https://doi.org/10.4028/www.scientific.net/MSF.901.14.
    [21]
    Rubangakene, N.O., Elkady, M., Elwardany, A., Fujii, M., Sekiguchi, H., Shokry, H., 2022. Novel nano-biosorbent materials from thermal catalytic degradation of green pea waste for cationic and anionic dye decolorization. Biomass Convers. Biorefinery 13, 14873-14888. https://doi.org/10.1007/s13399-022-03299-y.
    [22]
    Safo, K., Noby, H., Matatoshi, M., Naragino, H., El-Shazly, A.H., 2022. Solvothermal prepared slag nanocomposite as a catalyst for organic dye photodegradation. Key Eng. Mater. 931, 125-130. https://doi.org/10.4028/p-u25360.
    [23]
    Safo, K., Noby, H., Mitsuhara, M., Naragino, H., 2023a. Novel solar simulated photocatalytic heterolysis of pharmaceutical wastewater via slag nanocomposite immobilization : Optimization using response surface methodology. Water Pract. Technol. 18, 2315-2328. https://doi.org/10.2166/wpt.2023.152.
    [24]
    Safo, K., Noby, H., Mitsuhara, M., Naragino, H., El-Shazly, A.H., 2023b. H2O2 assisted steel slag nanocomposite for degradation of organic pollutant in an advanced oxidation process for suspension and spin-coated mode. Environmental Nanotechnology, Monitoring & Management 20, 100836. https://doi.org/10.1016/j.enmm.2023.100836.
    [25]
    Samy, M., Ibrahim, M.G., Gar Alalm, M., Fujii, M., 2020. MIL-53(Al)/ZnO coated plates with high photocatalytic activity for extended degradation of trimethoprim via novel photocatalytic reactor. Sep. Purif. Technol. 249, 117173. https://doi.org/10.1016/j.seppur.2020.117173.
    [26]
    Samy, M., Mensah, K., Gar Alalm, M., 2022. A review on photodegradation mechanism of bio-resistant pollutants: Analytical methods, transformation products, and toxicity assessment. J. Water Process Eng. 49, 103151. https://doi.org/10.1016/j.jwpe.2022.103151.
    [27]
    Sharma, B., Boruah, P.K., Yadav, A., Das, M.R., 2018. TiO2-Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6, 134-145. https://doi.org/10.1016/j.jece.2017.11.025.
    [28]
    Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H.H., Guo, W., Ng, H.Y., Taherzadeh, M.J., 2021. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12(1), 70-87. https://doi.org/10.1080/21655979.2020.1863034.
    [29]
    Siddiqui, V.U., Ansari, A., Ansari, M.T., Akram, M.K., Siddiqi, W.A., 2022. Fabrication of a zinc oxide/alginate (ZnO/Alg) bionanocomposite for enhanced dye degradation and its optimization study. RSC Adv. 12, 7210-7228. https://doi.org/10.1039/d1ra08991a.
    [30]
    Tang, X., Feng, Q., Liu, K., Tan, Y., 2016. Synthesis and characterization of a novel nanofibrous TiO2/SiO2 composite with enhanced photocatalytic activity. Mater. Lett. 183, 175-178. https://doi.org/10.1016/j.matlet.2016.07.103.
    [31]
    Tayebee, R., Esmaeili, E., Maleki, B., Khoshniat, A., Chahkandi, M., Mollania, N., 2020. Photodegradation of methylene blue and some emerging pharmaceutical micropollutants with an aqueous suspension of WZnO-NH2@HNH3PWNH12ONH40 nanocomposite. J. Mol. Liq. 317, 113928. https://doi.org/10.1016/j.molliq.2020.113928.
    [32]
    Tetteh, E.K., Ezugbe, E.O., Asante-Sackey, D., Armah, E.K., Rathilal, S., 2021. Response surface methodology: Photocatalytic degradation kinetics of basic blue 41 dye using activated carbon with TiO2. Molecules 26(4), 1068. https://doi.org/10.3390/molecules26041068.
    [33]
    Xu, J., Yang, J., Zhang, P., Yuan, Q., Zhu, Y., Wang, Y., Wu, M., Wang, Z., Chen, M., 2017. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Sci. Eng. 10(4), 334-339. https://doi.org/10.1016/j.wse.2017.12.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return