Citation: | Kingsley Safo, Norbert Onen Rubangakene, Hussien Noby, Ahmed H. El-Shazly. 2025: Photocatalytic purification of dye-containing wastewater using a novel embedded hybrid TiO2–slag catalyst heterojunction nanocomposite coupled with statistical models: A sustainable and techno-economic approach. Water Science and Engineering, 18(2): 151-164. doi: 10.1016/j.wse.2025.02.003 |
[1] |
Abbas, N., Shao, G.N., Haider, M.S., Imran, S.M., Park, S.S., Kim, H.T., 2016. Sol-gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. J. Ind. Eng. Chem. 39, 112-120. https://doi.org/10.1016/j.jiec.2016.05.015.
|
[2] |
Abdellah, M.H., Nosier, S.A., El-Shazly, A.H., Mubarak, A.A., 2018. Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alexandria Engineering Journal 57, 3727-3735. https://doi.org/10.1016/j.aej.2018.07.018.
|
[3] |
Ali, A.S., Khan, I., Zhang, B., Nomura, K., Homonnay, Z., Kuzmann, E., Scrimshire, A., Bingham, P.A., Krehula, S., Music, S., et al., 2020. Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light. J. Radioanal. Nucl. Chem. 325, 537-549. https://doi.org/10.1007/s10967-020-07238-x.
|
[4] |
Ananpattarachai, J., Kajitvichyanukul, P., Seraphin, S., 2009. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168, 253-261. https://doi.org/10.1016/j.jhazmat.2009.02.036.
|
[5] |
Behnajady, M.A., Modirshahla, N., Mirzamohammady, M., Vahid, B., Behnajady, B., 2008. Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater. 160, 508-513. https://doi.org/10.1016/j.jhazmat.2008.03.049.
|
[6] |
Cao, X., Luo, S., Liu, C., Chen, J., 2017. Synthesis of bentonite-supported Fe2O3-doped TiO2 superstructures for highly promoted photocatalytic activity and recyclability. Adv. Powder Technol. 28(3), 993-999. https://doi.org/10.1016/j.apt.2017.01.003.
|
[7] |
Cao, Y.Q., Zi, T.Q., Zhao, X.R., Liu, C., Ren, Q., Fang, J.B., Li, W.M., Li, A.D., 2020. Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition. Sci. Rep. 10, 13437. https://doi.org/10.1038/s41598-020-70352-z.
|
[8] |
Cen, L., Tang, T., Yu, F., Wu, H., Li, C., Zhu, H., Guo, Y., 2023. Fabrication of ZIF-8/TiO2 electrospinning nanofibers for synergistic photodegradation in dyeing wastewater. J. Ind. Eng. Chem. 126, 537-545. https://doi.org/10.1016/j.jiec.2023.06.042.
|
[9] |
Demarema, S., Nasr, M., Ookawara, S., Abdelhaleem, A., 2024. Enhanced synergistic system for the persulfate activation under visible light using novel N-ZnO photocatalyst supported on Lantana camara-based biochar. Chemosphere 349, 140840. https://doi.org/10.1016/j.chemosphere.2023.140840.
|
[10] |
Gar Alalm, M., Samy, M., Ookawara, S., Ohno, T., 2018. Immobilization of S-TiO2 on reusable aluminum plates by polysiloxane for photocatalytic degradation of 2,4-dichlorophenol in water. J. Water Process Eng. 26, 329-335. https://doi.org/10.1016/j.jwpe.2018.11.001.
|
[11] |
Gaya, U.I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9(1), 1-12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
|
[12] |
Hussain, H.M., Fiaz, M., Athar, M., 2021. Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies. J. Iran. Chem. Soc. 18, 1269-1277. https://doi.org/10.1007/s13738-020-02109-4.
|
[13] |
Jatoi, Y.F., Fiaz, M., Athar, M., 2021. Synthesis of efficient TiO2/Al2O3@Cu(BDC) composite for water splitting and photodegradation of methylene blue. J. Aust. Ceram. Soc. 57, 489-496. https://doi.org/10.1007/s41779-020-00548-z.
|
[14] |
Khataee, A.R., Pons, M.N., Zahraa, O., 2009. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure. J. Hazard. Mater. 168, 451-457. https://doi.org/10.1016/j.jhazmat.2009.02.052.
|
[15] |
Lin, Y., L., Kurniawan, T.A., Ying, Z., Albadarin, A.B., Walker, G., 2017. Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV-VIS irradiation. J. Mol. Liq. 243, 761-770. https://doi.org/10.1016/j.molliq.2017.08.092.
|
[16] |
Liu, L., Liu, Y., Wang, X., Hu, N., Li, Y., Li, C., Meng, Y., An, Y., 2021. Synergistic effect of B-TiO2 and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation. Appl. Surf. Sci. 561, 149969. https://doi.org/10.1016/j.apsusc.2021.149969.
|
[17] |
Mensah, K., Shokry, H., Elkady, M., Hawash, H.B., Samy, M., 2024. Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Sci. Eng. 17(3), 226-235. https://doi.org/10.1016/j.wse.2024.01.005.
|
[18] |
Nguyen, C.H., Fu, C.C., Juang, R.S., 2018. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 202, 413-427. https://doi.org/10.1016/j.jclepro.2018.08.110.
|
[19] |
Onen, N., Elwardany, A., Fujii, M., 2023. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chem. Eng. Res. Des. 189, 636-651. https://doi.org/10.1016/j.cherd.2022.12.003.
|
[20] |
Ramadhan, M., Pradipta, A.R., Kunarti, E.S., 2017. Synthesis of Fe3O4/TiO2-Co nanocomposite as model of photocatalyst with magnetic properties. Materials Science Forum 901, 14-19. https://doi.org/10.4028/www.scientific.net/MSF.901.14.
|
[21] |
Rubangakene, N.O., Elkady, M., Elwardany, A., Fujii, M., Sekiguchi, H., Shokry, H., 2022. Novel nano-biosorbent materials from thermal catalytic degradation of green pea waste for cationic and anionic dye decolorization. Biomass Convers. Biorefinery 13, 14873-14888. https://doi.org/10.1007/s13399-022-03299-y.
|
[22] |
Safo, K., Noby, H., Matatoshi, M., Naragino, H., El-Shazly, A.H., 2022. Solvothermal prepared slag nanocomposite as a catalyst for organic dye photodegradation. Key Eng. Mater. 931, 125-130. https://doi.org/10.4028/p-u25360.
|
[23] |
Safo, K., Noby, H., Mitsuhara, M., Naragino, H., 2023a. Novel solar simulated photocatalytic heterolysis of pharmaceutical wastewater via slag nanocomposite immobilization : Optimization using response surface methodology. Water Pract. Technol. 18, 2315-2328. https://doi.org/10.2166/wpt.2023.152.
|
[24] |
Safo, K., Noby, H., Mitsuhara, M., Naragino, H., El-Shazly, A.H., 2023b. H2O2 assisted steel slag nanocomposite for degradation of organic pollutant in an advanced oxidation process for suspension and spin-coated mode. Environmental Nanotechnology, Monitoring & Management 20, 100836. https://doi.org/10.1016/j.enmm.2023.100836.
|
[25] |
Samy, M., Ibrahim, M.G., Gar Alalm, M., Fujii, M., 2020. MIL-53(Al)/ZnO coated plates with high photocatalytic activity for extended degradation of trimethoprim via novel photocatalytic reactor. Sep. Purif. Technol. 249, 117173. https://doi.org/10.1016/j.seppur.2020.117173.
|
[26] |
Samy, M., Mensah, K., Gar Alalm, M., 2022. A review on photodegradation mechanism of bio-resistant pollutants: Analytical methods, transformation products, and toxicity assessment. J. Water Process Eng. 49, 103151. https://doi.org/10.1016/j.jwpe.2022.103151.
|
[27] |
Sharma, B., Boruah, P.K., Yadav, A., Das, M.R., 2018. TiO2-Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. J. Environ. Chem. Eng. 6, 134-145. https://doi.org/10.1016/j.jece.2017.11.025.
|
[28] |
Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H.H., Guo, W., Ng, H.Y., Taherzadeh, M.J., 2021. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 12(1), 70-87. https://doi.org/10.1080/21655979.2020.1863034.
|
[29] |
Siddiqui, V.U., Ansari, A., Ansari, M.T., Akram, M.K., Siddiqi, W.A., 2022. Fabrication of a zinc oxide/alginate (ZnO/Alg) bionanocomposite for enhanced dye degradation and its optimization study. RSC Adv. 12, 7210-7228. https://doi.org/10.1039/d1ra08991a.
|
[30] |
Tang, X., Feng, Q., Liu, K., Tan, Y., 2016. Synthesis and characterization of a novel nanofibrous TiO2/SiO2 composite with enhanced photocatalytic activity. Mater. Lett. 183, 175-178. https://doi.org/10.1016/j.matlet.2016.07.103.
|
[31] |
Tayebee, R., Esmaeili, E., Maleki, B., Khoshniat, A., Chahkandi, M., Mollania, N., 2020. Photodegradation of methylene blue and some emerging pharmaceutical micropollutants with an aqueous suspension of WZnO-NH2@HNH3PWNH12ONH40 nanocomposite. J. Mol. Liq. 317, 113928. https://doi.org/10.1016/j.molliq.2020.113928.
|
[32] |
Tetteh, E.K., Ezugbe, E.O., Asante-Sackey, D., Armah, E.K., Rathilal, S., 2021. Response surface methodology: Photocatalytic degradation kinetics of basic blue 41 dye using activated carbon with TiO2. Molecules 26(4), 1068. https://doi.org/10.3390/molecules26041068.
|
[33] |
Xu, J., Yang, J., Zhang, P., Yuan, Q., Zhu, Y., Wang, Y., Wu, M., Wang, Z., Chen, M., 2017. Preparation of 2D square-like Bi2S3-BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Sci. Eng. 10(4), 334-339. https://doi.org/10.1016/j.wse.2017.12.010.
|