Volume 18 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
Horieh Akbari, Hossein Hazrati, Abbas Nazmkhah, Hanieh Shokrkar. 2025: Simultaneous assessment of effects of variations in temperature and hydraulic retention time on membrane fouling in membrane bioreactors. Water Science and Engineering, 18(2): 200-208. doi: 10.1016/j.wse.2025.03.001
Citation: Horieh Akbari, Hossein Hazrati, Abbas Nazmkhah, Hanieh Shokrkar. 2025: Simultaneous assessment of effects of variations in temperature and hydraulic retention time on membrane fouling in membrane bioreactors. Water Science and Engineering, 18(2): 200-208. doi: 10.1016/j.wse.2025.03.001

Simultaneous assessment of effects of variations in temperature and hydraulic retention time on membrane fouling in membrane bioreactors

doi: 10.1016/j.wse.2025.03.001
  • Available Online: 2025-06-24
  • Membrane fouling remains the primary economic barrier to the widespread implementation of membrane bioreactors (MBRs), despite the fact that they lead to the production of high-quality effluent. Operational conditions are critical factors influencing membrane fouling. This study aimed to investigate the simultaneous impacts of temperature and hydraulic retention time (HRT) variations on membrane fouling. Experiments were conducted at three different temperatures (18°C, 25°C, and 32°C) and HRTs (6 h, 9 h, and 15 h). The results demonstrated that increases in both temperature and HRT contributed to a reduction in membrane fouling. Additionally, a positive interaction between temperature and HRT was observed in the linear slope variation of membrane permeation, with temperature variations exerting a greater influence on membrane fouling than HRT variations. Fouling factor analysis revealed that increases in temperature and HRT led to decreased concentrations of soluble microbial products (SMP) and extracellular polymeric substances (EPS), particularly carbohydrates, in the activated sludge. Analyses of the cake layer of the membrane indicated that increasing temperature and HRT reduced EPS levels, particularly polysaccharides and proteins; altered primary protein structure; and increased the mean particle size distribution. Ultimately, these changes led to reductions in both reversible and irreversible hydraulic resistances. This study highlights the importance of optimizing operational parameters such as temperature and HRT to enhance membrane performance and treatment efficiency in MBR systems while mitigating fouling.

     

  • loading
  • [1]
    Ahsani, M., Hazrati, H., Javadi, M., Ulbricht, M., Yegani, R. 2020. Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater. Separation and Purification Technology 249, 116938. https://doi.org/10.1016/j.seppur.2020.116938.
    [2]
    Ahsani, M., Oghyanous, F.A., Meyer, J., Ulbricht, M., Yegani, R. 2022. PVDF membranes modified with diblock copolymer PEO-b-PMMA as additive: Effects of copolymer and barrier pore size on filtration performance and fouling in a membrane bioreactor. Chemical Engineering Research and Design 184, 678-691. https://doi.org/10.1016/j.cherd.2022.05.051.
    [3]
    Akamatsu, K., Lu, W., Sugawara, T., Nakao, S., 2010. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Research 44(3), 825-830. https://doi.org/10.1016/j.watres.2009.10.026.
    [4]
    Al-Amri, A., Salim, M.R., Aris, A. 2010. The effect of different temperatures and fluxes on the performance of membrane bioreactor treating synthetic-municipal wastewater. Desalination 259(1-3), 111-119. https://doi.org/10.1016/j.desal.2010.04.023.
    [5]
    Al-Amri, A., Salim, M.R., Aris, A., 2011. The effect of drastic temperature changes on the performance of MBR treating municipal wastewater. Water Science and Technology 64(7), 1398-1405. https://doi.org/10.2166/wst.2011.421.
    [6]
    Arevalo, J., Ruiz, L., Perez, J., Gomez, M., 2014. Effect of temperature on membrane bioreactor performance working with high hydraulic and sludge retention time. Biochemical Engineering Journal 88, 42-49. https://doi.org/10.1016/j.bej.2014.03.006.
    [7]
    Aslam, M., Ahmad, R., Kim, J., 2018. Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Separation and Purification Technology 206, 297-315. https://doi.org/10.1016/j.seppur.2018.06.004.
    [8]
    Ayyaru, S., Pandiyan, R., Ahn, Y.H., 2019. Fabrication and characterization of anti-fouling and non-toxic polyvinylidene fluoride-sulphonated carbon nanotube ultrafiltration membranes for membrane bioreactors applications. Chemical Engineering Research and Design 142, 176-188. https://doi.org/10.1016/j.cherd.2018.12.008.
    [9]
    Banerjee, S., Das, A., Das, R., Bhattacharjee, C., 2024. Mesoporous Mg-Al-Ti composite oxide incorporated mixed matrix ultrafiltration membrane with superior multi-heavy metal removal capacity, anti-fouling & anti-microbial property. Journal of Membrane Science 703, 122836. https://doi.org/10.1016/j.memsci.2024.122836.
    [10]
    Chang, I.S., Lee, C.H., 1998. Membrane filtration characteristics in membrane-coupled activated sludge system - The effect of physiological states of activated sludge on membrane fouling. Desalination 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3.
    [11]
    Coates, J., 2000. Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry 12, 10815-10837. https://doi.org/10.1002/9780470027318.a5606.
    [12]
    Ding, A., Wang, J., Lin, D., Tang, X., Cheng, X., Li, G., Ren, N., Liang, H., 2017. In situ coagulation versus pre-coagulation for gravity-driven membrane bioreactor during decentralized sewage treatment: Permeability stabilization, fouling layer formation and biological activity. Water Research 126, 197-207. https://doi.org/10.1016/j.watres.2017.09.027.
    [13]
    Gao, S.S., Yin, X., Huang, R., Tian, J.Y., 2024. Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane. Water Science and Engineering 17(4), 352-360. https://doi.org/10.1016/j.wse.2024.01.001.
    [14]
    Ghafari, S., Aziz, H.A., Isa, M.H., Zinatizadeh, A.A., 2009. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials 163(2-3), 650-656. https://doi.org/10.1016/j.jhazmat.2008.07.090.
    [15]
    Gkotsis, P.K., Mitrakas, M.M., Tolkou, A.K., Zouboulis, A.I., 2017. Batch and continuous dosing of conventional and composite coagulation agents for fouling control in a pilot-scale MBR. Chemical Engineering Journal 311, 255-264. https://doi.org/10.1016/j.cej.2016.11.099.
    [16]
    Hartree, E.F., 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry 48(2), 422-427. https://doi.org/10.1016/0003-2697(72)90094-2.
    [17]
    Hazrati, H., Moghaddam, A.H., Rostamizadeh, M., 2017. The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling. Journal of Environmental Chemical Engineering 5(3), 3005-3013. https://doi.org/10.1016/j.jece.2017.05.050.
    [18]
    Hazrati, H., Jahanbakhshi, N., Rostamizadeh, M., 2018. Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents. Journal of Membrane Science 555, 455-462. https://doi.org/10.1016/j.memsci.2018.03.076.
    [19]
    Hemmati, A., Dolatabad, M.M., Naeimpoor, F., Pak, A., Mohammdi, T., 2012. Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance. Korean Journal of Chemical Engineering 29, 369-376. https://doi.org/10.1007/s11814-011-0180-8.
    [20]
    Huang, S., Shi, X., Bi, X., Lee, L.Y., Ng, H.Y., 2019. Effect of ferric hydroxide on membrane fouling in membrane bioreactor treating pharmaceutical wastewater. Bioresource Technology 292, 121852. https://doi.org/10.1016/j.biortech.2019.121852.
    [21]
    Iorhemen, O.T., Hamza, R.A., Tay, J.H., 2016. Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling. Membranes 6(2), 33. https://doi.org/10.3390/membranes6020033.
    [22]
    Isma, M.A., Idris, A., Omar, R., Razreena, A.P., 2014. Effects of SRT and HRT on treatment performance of MBR and membrane fouling. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 8(6), 485-489.
    [23]
    Iversen, V., Villwock, J., De la Torre Garcia, T., Drews, A., Kraume, M., 2009. Impact of MBR flux enhancer on floc size distribution, dewaterability and shear stability. Desalination and Water Treatment 6(1-3), 33-40. https://doi.org/10.5004/dwt.2009.639.
    [24]
    Ji, J., Ni, J., Ohtsu, A., Isozumi, N., Hu, Y., Du, R., Chen, Y., Qin, Y., Kubota, K., Li, Y.Y., 2021. Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: Removal efficiency, biogas, and microbial community. Bioresource Technology 336, 125306. https://doi.org/10.1016/j.biortech.2021.125306.
    [25]
    Jiang, T., Kennedy, M.D., Guinzbourg, B.F., Vanrolleghem, P.A., Schippers, J.C., 2005. Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism. Water Science and Technology 51(6-7), 19-25. https://doi.org/10.2166/wst.2005.0617.
    [26]
    Karimi, L., Hazrati, H., Gharibian, S., Shokrkar, H., 2021. Investigation of various anode and cathode materials in electrochemical membrane bioreactors for mitigation of membrane fouling. Journal of Environmental Chemical Engineering 9(1), 104857. https://doi.org/10.1016/j.jece.2020.104857.
    [27]
    Katayon, S., Noor, M.M.M., Ahmad, J., Ghani, L.A., Nagaoka, H., Aya, H., 2004. Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater. Desalination 167, 153-158. https://doi.org/10.1016/j.desal.2004.06.124.
    [28]
    Kozak, M., Cirik, K., Dolaz, M., Basak, S., 2021. Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor-aerobic membrane bioreactor. Process Biochemistry 105, 62-71. https://doi.org/10.1016/j.procbio.2021.03.013.
    [29]
    Ma, C., Yu, S., Shi, W., Heijman, S., Rietveld, L., 2013. Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water. Bioresource Technology 141, 19-24. https://doi.org/10.1016/j.biortech.2013.02.025.
    [30]
    Meng, F., Shi, B., Yang, F., Zhang, H., 2007. Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess and Biosystems Engineering 30, 359-367. https://doi.org/10.1007/s00449-007-0132-1.
    [31]
    Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., Yang, F., 2009. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research 43(6), 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044.
    [32]
    Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H.S., Chae, S.R., 2017. Fouling in membrane bioreactors: An updated review. Water Research 114, 151-180. https://doi.org/10.1016/j.watres.2017.02.006.
    [33]
    Mohamadi, S., Hazrati, H., Shayegan, J., 2020. Influence of a new method of applying adsorbents on membrane fouling in MBR systems. Water and Environment Journal 34, 355-366. https://doi.org/10.1111/wej.12532.
    [34]
    Montgomery, D.C., 2017. Design and Analysis of Experiments (10th Edition). John Wiley & Sons, Hoboken.
    [35]
    Nazmkhah, A., Oghyanous, F.A., Etemadi, H., Yegani, R., 2022. Optimizing dose of coagulant and pH values for membrane fouling control in a submerged membrane bioreactor. Journal of Chemical Technology & Biotechnology 97(10), 2794-2804. https://doi.org/10.1002/jctb.7148.
    [36]
    Oghyanous, F.A., Etemadi, H., Yegani, R., 2021. The effect of sludge retention time and organic loading rate on performance and membrane fouling in membrane bioreactor. Journal of Chemical Technology & Biotechnology 96(3), 743-754. https://doi.org/10.1002/jctb.6588.
    [37]
    Oghyanous, F.A., Etemadi, H., Yegani, R., Ghofrani, B., 2022. Membrane fouling and removal performance of submerged aerobic membrane bioreactors: A comparative study of optimizing operational conditions and membrane modification. Journal of Chemical Technology & Biotechnology 97(5), 1190-1199. https://doi.org/10.1002/jctb.7004.
    [38]
    Rahimi, Y., Torabian, A., Mehrdadi, N., Habibi-Rezaie, M., Pezeshk, H., Nabi-Bidhendi, G.R., 2011. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. Journal of Hazardous Materials 186(2-3), 1097-1102. https://doi.org/10.1016/j.jhazmat.2010.11.117.
    [39]
    Rice, E.W., Bridgewater, L., 2012. Standard Methods for the Examination of Water and Wastewater (23th Edition). American Public Health Association, Washington D.C.
    [40]
    Sabalanvand, S., Hazrati, H., Jafarzadeh, Y., Jafarizad, A., Gharibian, S., 2021. Investigation of Ag and magnetite nanoparticle effect on the membrane fouling in membrane bioreactor. International Journal of Environmental Science and Technology 18, 3407-3418. https://doi.org/10.1007/s13762-020-03053-9.
    [41]
    Sambusiti, C., Saadouni, M., Gauchou, V., Segues, B., Leca, M.A., Baldoni-Andrey, P., Jacob, M., 2020. Influence of HRT reduction on pilot scale flat sheet submerged membrane bioreactor (sMBR) performances for oil & gas wastewater treatment. Journal of Membrane Science 594, 117459. https://doi.org/10.1016/j.memsci.2019.117459.
    [42]
    Satyawali, Y., Balakrishnan, M., 2009. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Research 43(6), 1577-1588. https://doi.org/10.1016/j.watres.2009.01.003.
    [43]
    Scheumann, R., Kraume, M., 2009. Influence of hydraulic retention time on the operation of a submerged membrane sequencing batch reactor (SM-SBR) for the treatment of greywater. Desalination 246(1-3), 444-451. https://doi.org/10.1016/j.desal.2008.03.066.
    [44]
    Shao, S., Qu, F., Liang, H., Chang, H., Yu, H., Li, G., 2014. Characterization of membrane foulants in a pilot-scale powdered activated carbon-membrane bioreactor for drinking water treatment. Process Biochemistry 49(10), 1741-1746. https://doi.org/10.1016/j.procbio.2014.06.024.
    [45]
    Shariati, S.R.P., Bonakdarpour, B., Zare, N., Ashtiani, F.Z., 2011. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresource Technology 102(17), 7692-7699. https://doi.org/10.1016/j.biortech.2011.05.065.
    [46]
    Sun, M., Yan, L., Zhang, L., Song, L., Guo, J., Zhang, H., 2019. New insights into the rapid formation of initial membrane fouling after in-situ cleaning in a membrane bioreactor. Process Biochemistry 78, 108-113. https://doi.org/10.1016/j.procbio.2019.01.004.
    [47]
    Trevelyan, W., Forrest, R., Harrison, J., 1952. Determination of yeast carbohydrates with the anthrone reagent. Nature 170(4328), 626-627. https://doi.org/10.1038/170626a0.
    [48]
    Trinh, T.K., Kang, L.S., 2011. Response surface methodological approach to optimize the coagulation-flocculation process in drinking water treatment. Chemical Engineering Research and Design 89(7), 1126-1135. https://doi.org/10.1016/j.cherd.2010.12.004.
    [49]
    van den Brink, P., Satpradit, O., Van Bentem, A., Zwijnenburg, A., Temmink, H., van Loosdrecht, M., 2011. Effect of temperature shocks on membrane fouling in membrane bioreactors. Water Research 45(15), 4491-4500. https://doi.org/10.1016/j.watres.2011.05.046. https://doi.org/10.1007/s11356-015-5751-5.
    [50]
    Wang, Z., Wu, Z., Tang, S., 2009. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research 43(9), 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026.
    [51]
    Yu, D., Chen, Y., Wei, Y., Wang, J., Wang, Y., Li, K., 2017. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times. Environmental Science and Pollution Research 24, 9026-9035.
    [52]
    Zhang, Z., Wang, Y., Leslie, G.L., Waite, T.D., 2015. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research 69(1), 210-222. https://doi.org/10.1016/j.watres.2014.11.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return