Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Dhanush Bhamitipadi Suresh, Daniel Wood, Yaqing Jin. 2025: Sedimentary bed morphology in the wake of flexible aquatic vegetation. Water Science and Engineering, 18(3): 354-368. doi: 10.1016/j.wse.2025.03.002
Citation: Dhanush Bhamitipadi Suresh, Daniel Wood, Yaqing Jin. 2025: Sedimentary bed morphology in the wake of flexible aquatic vegetation. Water Science and Engineering, 18(3): 354-368. doi: 10.1016/j.wse.2025.03.002

Sedimentary bed morphology in the wake of flexible aquatic vegetation

doi: 10.1016/j.wse.2025.03.002
  • Received Date: 2024-10-29
  • Accepted Date: 2025-02-18
  • Available Online: 2025-10-15
  • The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios (AR = l/b, where l and b are the length and width of the blade, respectively) and incoming flow velocities was experimentally investigated in a water channel. A surface scanner was implemented to quantify bed topography, and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows. The results showed that due to the deflection of incoming flow, the velocity magnitude increased at the lateral sides of the blade, thereby producing distinctive symmetric scour holes in these regions. The normalized morphology profiles of the sedimentary bed, which were extracted along the streamwise direction at the location of the maximum erosion depth, exhibited a self-similar pattern that closely followed a sinusoidal wave profile. The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade. At a given flow velocity, the blade with lower aspect ratios exhibited less significant deformation, causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes. Further investigation indicated that when the blade underwent slight deformation, the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed. Supported with measurements, a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.

     

  • loading
  • [1]
    Alben, S., Shelley, M., Zhang, J., 2002. Drag reduction through self-similar bending of a flexible body. Nature 420(6915), 479-481. https://doi.org/10.1038/nature01232.
    [2]
    Alben, S., Shelley, M., Zhang, J., 2004. How flexibility induces streamlining in a two-dimensional flow. Phys. Fluids 16(5), 1694-1713. https://doi.org/10.1063/1.1668671.
    [3]
    Basnet, K., Constantinescu, G., 2019. Effect of a bottom gap on the mean flow and turbulence structure past vertical solid and porous plates situated in the vicinity of a horizontal channel bed. Phys. Rev. E 4(4), 044604. https://doi.org/10.1103/PhysRevFluids.4.044604.
    [4]
    Bhamitipadi Suresh, D., Aju, E.J., Jin, Y., 2020. Turbulent boundary layer flow over two side-by-side wall-mounted cylinders: Wake characteristics and aerodynamic loads. Phys. Fluids 32(11), 115104. https://doi.org/10.1063/5.0029255.
    [5]
    Bhamitipadi Suresh, D., Aju, E.J., Pham, D.T., Jin, Y., 2021. On the incipient sediment suspension downstream of three-dimensional wall-mounted obstacles. Phys. Fluids 33(8), 083307. https://doi.org/10.1063/5.0059969.
    [6]
    Bouma, T.J., Van Duren, L.A., Temmerman, S., Claverie, T., Blanco-Garcia, A., Ysebaert, T., Herman, P.M.J., 2007. Spatial flow and sedi-mentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont. Shelf Res. 27(8), 1020-1045. https://doi.org/10.1016/j.csr.2005.12.019.
    [7]
    Chamorro, L.P., Troolin, D.R., Lee, S.J., Arndt, R.E.A., Sotiropoulos, F., 2013. Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine. Exp. Fluid 54, 1459. https://doi.org/10.1007/s00348-013-1459-9.
    [8]
    Cheng, N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng. 123(2), 149-152. https://doi.org/10.1061/(ASCE)0733.
    [9]
    Cheng, N.S., Wei, M., Lu, Y., 2020. Critical flow velocity for incipient sediment motion in open channel flow with rigid emergent vegetation. J. Eng. Mech. 146(11), 04020123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001857.
    [10]
    Ciraolo, G., Ferreri, G.B., Loggia, G.L., 2006. Flow resistance of Posidonia oceanica in shallow water. J. Hydraul. Res. 44(2), 189-202. https://doi.org/10.1080/00221686.2006.9521675.
    [11]
    De Langre, E., 2008. Effects of wind on plants. Annu. Rev. Fluid Mech. 40(1), 141-168. https://doi.org/10.1146/annurev.fluid.40.111406.102135.
    [12]
    Du, S., Wang, Z., Wang, R., Liang, B., Pan, X., 2022. Effects of flow intensity on local scour around a submerged square pile in a steady current. Phys. Fluids 34(8), 085126. https://doi.org/10.1063/5.0103556.
    [13]
    Dupont, S., Bergametti, G., Simo€ens, S., 2014. Modeling aeolian erosion in presence of vegetation. J. Geophys. Res. Earth Surf. 119(2), 168-187. https://doi.org/10.1002/2013JF002875.
    [14]
    Elliott, S.H., Tullos, D.D., Walter, C., 2019. Physical modeling of the feedbacks between a patch of flexible reed canarygrass (Phalaris arundinacea), wake hydraulics, and downstream deposition. Environ. Fluid Mech. 19, 255-277. https://doi.org/10.1007/s10652-018-9622-8.
    [15]
    Fakhimjoo, M.S., Ardeshir, A., Behzadian, K., Karami, H., 2023. Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Sci. Eng. 16(1), 94-105. https://doi.org/10.1016/j.wse.2022.12.001.
    [16]
    Follett, E.M., Nepf, H.M., 2012. Sediment patterns near a model patch of reedy emergent vegetation. Geomorphology 179, 141-151. https://doi.org/10.1016/j.geomorph.2012.08.006.
    [17]
    Gosselin, F., De Langre, E., Machado-Almeida, B.A., 2010. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319-341. https://doi.org/10.1017/S0022112009993673.
    [18]
    Gosselin, F.P., 2019. Mechanics of a plant in fluid flow. J. Exp. Bot. 70(14), 3533-3548. https://doi.org/10.1093/jxb/erz288.
    [19]
    Guan, D.W., Xie, Y.X., Yao, Z.S., Chiew, Y.M., Zhang, J.S., Zheng, J.H., 2022. Local scour at offshore windfarm monopile foundations: A review. Water Sci. Eng. 15(1), 29-39. https://doi.org/10.1016/j.wse.2021.12.006.
    [20]
    Hamed, A.M., Pagan-Vazquez, A., Khovalyg, D., Zhang, Z., Chamorro, L.P., 2017. Vortical structures in the near wake of tabs with various geometries. J. Fluid Mech. 825, 167-188. https://doi.org/10.1017/jfm.2017.384.
    [21]
    Hu, Z., Lei, J., Liu, C., Nepf, H., 2018. Wake structure and sediment deposition behindmodels of submerged vegetationwith and withoutflexible leaves. Adv. Water Resour. 118, 28-38. https://doi.org/10.1016/j.advwatres.2018.06.001.
    [22]
    Huai, W.X., Li, S., Katul, G.G., Liu, M.Y., Yang, Z.H., 2021. Flow dynamics and sediment transport in vegetated rivers: A review. J. Hydrodyn. 33(3), 400-420. https://doi.org/10.1007/s42241-021-0043-7.
    [23]
    Jamali, M., Sehat, H., 2020. Experimental study of lateral dispersion in flexible aquatic canopy with emergent blade-like stems. Phys. Fluids 32(6). https://doi.org/10.1063/5.0010665.
    [24]
    Jin, Y., Kim, J.T., Hong, L., Chamorro, L.P., 2018a. Flow-induced oscillations of low-aspect-ratio flexible plates with various tip geometries. Phys. Fluids 30(9), 097102. https://doi.org/10.1063/1.5046950.
    [25]
    Jin, Y., Kim, J.T., Mao, Z., Chamorro, L.P., 2018b. On the couple dynamics of wall-mounted flexible plates in tandem. J. Fluid Mech. 852, R2. https://doi.org/10.1017/jfm.2018.580.
    [26]
    Jin, Y., Kim, J.T., Fu, S., Chamorro, L.P., 2019. Flow-induced motions of flexible plates: Fluttering, twisting and orbital modes. J. Fluid Mech. 864, 273-285. https://doi.org/10.1017/jfm.2019.40.
    [27]
    Judd, M.J., Raupach, M.R., Finnigan, J.J., 1996. A wind tunnel study of tur-bulent flow around single and multiple windbreaks, part I: Velocity fields. Boundary-Layer Meteorol. 80(1), 127-165. https://doi.org/10.1007/ BF00119015.
    [28]
    Julien, P.Y., 2010. Erosion and Sedimentation. Cambridge University Press, Cambridge. Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., Kumada, M., 1984. Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness. Bulletin of JSME 27(232), 2142-2151. https://doi.org/10.1299/jsme1958.27.2142.
    [29]
    Kearney, M.S., Riter, J.A., Turner, R.E., 2011. Freshwater river diversions for marsh restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 38(16), L16405. https://doi.org/10.1029/2011GL047847.
    [30]
    Kemp, J.L., Harper, D.M., Crosa, G.A., 2000. The habitat-scale ecohydraulics of rivers. Ecol. Eng. 16(1), 17-29. https://doi.org/10.1016/S0925-8574(00)00073-2.
    [31]
    Kenyon, R.A., Haywood, M.D.E., Heales, D.S., Loneragan, N.R., Pendrey, R.C., Vance, D.J., 1999. Abundance of fish and crustacean postlarvae on portable artificial seagrass units: Daily sampling provides quantitative estimates of the settlement of new recruits. J. Exp. Mar. Biol. Ecol. 232(2), 197-216. https://doi.org/10.1016/S0022-0981(98)00107-5.
    [32]
    Liang, B., Du, S., Pan, X., Zhang, L., 2019. Local scour for vertical piles in steady currents: Review of mechanisms, influencing factors and empirical equations. J. Mar. Sci. Eng. 8(1), 4. https://doi.org/10.3390/jmse8010004.
    [33]
    Liu, C., Nepf, H., 2016. Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity. Water Resour. Res. 52(1), 600-612. https://doi.org/10.1002/2015WR018249.
    [34]
    Liu, C., Yan, C., Sun, S., Lei, J., Nepf, H., Shan, Y., 2022. Velocity, turbulence, and sediment deposition in a channel partially filled with a Phragmites australis canopy. Water Resour. Res. 58(8), e2022WR032381. https://doi.org/10.1029/2022WR032381.
    [35]
    Liu, C., Shan, Y., He, L., Li, F., Liu, X., Nepf, H., 2024. Plant morphology impacts bedload sediment transport. Geophys. Res. Lett. 51(12), e2024GL108800. https://doi.org/10.1029/2024GL108800.
    [36]
    Lu, Y., Cheng, N.S., Wei, M., 2021. Formulation of bed shear stress for computing bed-load transport rate in vegetated flows. Phys. Fluids 33(11), 115105. https://doi.org/10.1063/5.0067851.
    [37]
    Lu, Y., Liang, B., Yin, Z., Pan, X., Wang, J., Du, S., 2022a. Experimental study on time factor of scour around pile groups. Ocean. Eng. 261, 112125. https://doi.org/10.1016/j.oceaneng.2022.112125.
    [38]
    Lu, Y., Wang, Z., Yin, Z., Du, S., Pan, X., Liang, B., 2022b. Experimental study on aspect ratio and velocity intensity of scour around submerged pile groups. Front. Mar. Sci. 9, 910723. https://doi.org/10.3389/fmars.2022.910723.
    [39]
    Luhar, M., Nepf, H.M., 2011. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56(6), 2003-2017. https://doi.org/10.4319/lo.2011.56.6.2003.
    [40]
    Manners, R.B., Wilcox, A.C., Kui, L., Lightbody, A.F., Stella, J.C., Sklar, L.S., 2015. When do plants modify fluvial processes? Plant-hydraulic in-teractions under variable flow and sediment supply rates. J. Geophys. Res. Earth Surf. 120(2), 325-345. https://doi.org/10.1002/2014JF003265.
    [41]
    Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1), 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59).
    [42]
    Moore, K.A., 2009. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J. Coast Res. 2009(10045), 162-178. https://doi.org/10.2112/SI45-162.1.
    [43]
    Morris, E.P., Peralta, G., Brun, F.G., Van Duren, L., Bouma, T.J., Perez-Llorens, J.L., 2008. Interaction between hydrodynamics and seagrass canopy structure: Spatially explicit effects on ammonium uptake rates. Limnol. Oceanogr. 53(4), 1531-1539. https://doi.org/10.4319/lo.2008.53.4.1531.
    [44]
    Nepf, H.M., 2012a. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44(1), 123-142. https://doi.org/10.1146/annurev-fluid-120710-101048.
    [45]
    Nepf, H.M., 2012b. Hydrodynamics of vegetated channels. J. Hydraul. Res. 50(3), 262-279. https://doi.org/10.1080/00221686.2012.696559.
    [46]
    Neuman, C.M., Sanderson, R.S., Sutton, S., 2013. Vortex shedding and mor-phodynamic response of bed surfaces containing non-erodible roughness elements. Geomorphology 198, 45-56. https://doi.org/10.1016/j.geomorph.2013.05.011.
    [47]
    Neuman, C.M., Bédard, O., 2015. A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface-mounted obstacle. J. Geophys. Res. Earth Surf. 120(9), 1824-1840. https://doi.org/ 10.1002/2015JF003475.
    [48]
    Neuman, C.M., von Bulow, C., O’Brien, P., 2021. Air flow and scour patterns around erosion control elements. Aeolian Res. 50, 100689. https://doi.org/10.1016/j.aeolia.2021.100689.
    [49]
    Ogawa, Y., Diosey, P.G., 1980. Surface roughness and thermal stratification effects on the flow behind a two-dimensional fence-II. A wind tunnel study and similarity considerations. Atmos. Environ. 14(11), 1309-1320. https://doi.org/10.1016/0004-6981(80)90232-2.
    [50]
    Ortiz, A.C., Ashton, A., Nepf, H., 2013. Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J. Geophys. Res. Earth Surf. 118(4), 2585-2599. https://doi.org/10.1002/ 2013JF002858.
    [51]
    Paola, C., Twilley, R.R., Edmonds, D.A., Kim, W., Mohrig, D., Parker, G., Viparelli, E., Voller, V.R., 2011. Natural processes in delta restoration: Application to the Mississippi Delta. Ann. Rev. Mar. Sci. 3(1), 67-91. https://doi.org/10.1146/annurev-marine-120709-142856.
    [52]
    Park, C.W., Lee, S.J., 2000. Free end effects on the near wake flow structure behind a finite circular cylinder. J. Wind Eng. Ind. Aerod. 88(2-3), 231-246. https://doi.org/10.1016/S0167-6105(00)00051-9.
    [53]
    Patton, E.G., Shaw, R.H., Judd, M.J., Raupach, M.R., 1998. Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol. 87, 275-307. https://doi.org/10.1023/A:1000945626163.
    [54]
    Raeisi, F., Zomorodian, S.M.A., Zolghadr, M., Azamathulla, H.M., 2024. Sacrificial piles as a countermeasure against local scour around underwater pipelines. Water Sci. Eng. 17(2), 187-196. https://doi.org/10.1016/j.wse.2023.08.002.
    [55]
    Raine, J.K., Stevenson, D.C., 1977. Wind protection by model fences in a simulated atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 2(2), 159-180. https://doi.org/10.1016/0167-6105(77)90015-0.
    [56]
    Roh, S.C., Park, S., 2003. Vortical flow over the free end surface of a finite circular cylinder mounted on a flat plate. Exp. Fluid 34(1), 63-67. https://doi.org/10.1007/s00348-002-0532-6.
    [57]
    Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. J. Fluid Mech. 126, 147-165. https://doi.org/10.1017/S0022112083000087.
    [58]
    Schulz, M., Kozerski, H.P., Pluntke, T., Rinke, K., 2003. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res. 37(3), 569-578. https://doi.org/10.1016/S0043-1354(02)00276-2.
    [59]
    Sehat, H., Abdolahpour, M., Jamali, M., Ghisalberti, M., 2023. The impact of plant oscillation on dispersion in emergent aquatic canopies. Water Resour. Res. 59(3), e2022WR032035. https://doi.org/10.1029/2022WR032035.
    [60]
    Shan, Y., Yan, C., Liu, J., Liu, C., 2023. Predicting velocity and turbulent kinetic energy inside an emergent Phragmites australis canopy with real morphology. Environ. Fluid Mech. 23(4), 943-963. https://doi.org/10.1007/s10652-023-09942-0.
    [61]
    Sharma, A., Kumar, B., 2021. Comparison of flow turbulence over a sand bed and gravel bed channel. Water Supply 21(8), 4581-4592. https://doi.org/10.2166/ws.2021.201.
    [62]
    Shi, Y., Jiang, B., Nepf, H.M., 2016. Influence of particle size and density, and channel velocity on the deposition patterns around a circular patch of model emergent vegetation. Water Resour. Res. 52(2), 1044-1055. https://doi.org/10.1002/2015WR018278.
    [63]
    Short, F.T., 2003. World Atlas of Seagrasses. University of California Press, Oakland. Sukhodolov, A., Thiele, M., Bungartz, H., 1998. Turbulence structure in a river reach with sand bed. Water Resour. Res. 34(5), 1317-1334. https://doi.org/10.1029/98WR00269.
    [64]
    Sumner, D., Heseltine, J.L., Dansereau, O.J.P., 2004. Wake structure of a finite circular cylinder of small aspect ratio. Exp. Fluid 37, 720-730. https://doi.org/10.1007/s00348-004-0862-7.
    [65]
    Tanaka, N., Yagisawa, J., 2010. Flow structures and sedimentation characteristics around clump-type vegetation. J. Hydro-environ. Res. 4(1), 15-25. https://doi.org/10.1016/j.jher.2009.11.002.
    [66]
    Tang, Z.H., Melville, B., Singhal, N., Shamseldin, A., Zheng, J.H., Guan, D.W., Cheng, L., 2022. Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Sci. Eng. 15(1), 15-28. https://doi.org/10.1016/j.wse.2021.12.010.
    [67]
    Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M., Ysebaert, T., De Vriend, H.J., 2013. Ecosystem-based coastal defence in the face of global change. Nature 504(7478), 79-83. https://doi.org/10.1038/ nature12859.
    [68]
    Tinoco, R.O., Coco, G., 2014. Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves. Earth Surf. Dyn. 2(1), 83-96. https://doi.org/10.5194/esurf-2-83-2014.
    [69]
    Tobin, N., Hamed, A.M., Chamorro, L.P., 2017. Fractional flow speed-up from porous windbreaks for enhanced wind-turbine power. Boundary-Layer Meteorol. 163, 253-271. https://doi.org/10.1007/s10546-016-0228-8.
    [70]
    Tobin, N., Chamorro, L.P., 2018. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness. Phys. Rev. E 3(3), 033801. https://doi.org/10.1103/PhysRevFluids.3.033801.
    [71]
    Tominaga, Y., Okaze, T., Mochida, A., 2018. Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle. J. Wind Eng. Ind. Aerod. 182, 262-271. https://doi.org/10.1016/j.jweia.2018.09.008.
    [72]
    VanKatwijk,M.M., Bos,A.R., Hermus,D.C.R., Suykerbuyk,W., 2010.Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions. Estuar. Coast Shelf Sci. 89(2), 175-181. https://doi.org/10.1016/j.ecss.2010.06.008.
    [73]
    Vogel, S., 1984. Drag and flexibility in sessile organisms. Am. Zool. 24(1), 37-44. https://doi.org/10.1093/icb/24.1.37.
    [74]
    Vogel, S., 1989. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40(8), 941-948. https://doi.org/10.1093/jxb/40.8.941.
    [75]
    Wang, H.F., Cao, H.L., Zhou, Y., 2014. POD analysis of a finite-length cylinder near wake. Exp. Fluid 55, 1790. https://doi.org/10.1007/s00348-014-1790-9.
    [76]
    White, B.L., Nepf, H.M., 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 593, 1-32. https://doi.org/10.1017/S0022112007008415.
    [77]
    Windham, L., Weis, J.S., Weis, P., 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine. Coast Shelf Sci. 56(1), 63-72. https://doi.org/10.1016/S0272-7714(02)00121-X.
    [78]
    Xu, Y., Nepf, H., 2020. Measured and predicted turbulent kinetic energy in flow through emergent vegetation with real plant morphology. Water Resour. Res. 56(12), e2020WR027892. https://doi.org/10.1029/2020WR027892.
    [79]
    Yager, E.M., Schmeeckle, M.W., 2013. The influence of vegetation on tur-bulence and bed load transport. J. Geophys. Res. Earth Surf. 118(3), 1585-1601. https://doi.org/10.1002/jgrf.20085.
    [80]
    Yang, J.Q., Nepf, H.M., 2018. A turbulence-based bed-load transport model for bare and vegetated channels. Geophys. Res. Lett. 45(19), 10428-10436. https://doi.org/10.1029/2018GL079319.
    [81]
    Yang, J.Q., Nepf, H.M., 2019. Impact of vegetation on bed load transport rate and bedform characteristics. Water Resour. Res. 55(7), 6109-6124. https://doi.org/10.1029/2018WR024404.
    [82]
    Yao, W., An, H., Draper, S., Cheng, L., Harris, J.M., 2018. Experimental investigation of local scour around submerged piles in steady current. Coast. Eng. 142, 27-41. https://doi.org/10.1016/j.coastaleng.2018.08.015.
    [83]
    Yauwenas, Y., Porteous, R., Moreau, D.J., Doolan, C.J., 2019. The effect of aspect ratio on the wake structure of finite wall-mounted square cylinders. J. Fluid Mech. 875, 929-960. https://doi.org/10.1017/jfm.2019.522.
    [84]
    Zhang, X., He, G., Zhang, X., 2020. Fluid-structure interactions of single and dual wall-mounted 2D flexible filaments in a laminar boundary layer. J. Fluid Struct. 92, 102787. https://doi.org/10.1016/j.jfluidstructs.2019.102787.
    [85]
    Zhao, M., Zhu, X., Cheng, L., Teng, B., 2012. Experimental study of local scour around subsea caissons in steady currents. Coast. Eng. 60, 30-40. https://doi.org/10.1016/j.coastaleng.2011.08.004.
    [86]
    Zong, L., Nepf, H., 2010. Flow and deposition in and around a finite patch of vegetation. Geomorphology 116(3-4), 363-372. https://doi.org/10.1016/j.geomorph.2009.11.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return