Citation: | Dhanush Bhamitipadi Suresh, Daniel Wood, Yaqing Jin. 2025: Sedimentary bed morphology in the wake of flexible aquatic vegetation. Water Science and Engineering, 18(3): 354-368. doi: 10.1016/j.wse.2025.03.002 |
[1] |
Alben, S., Shelley, M., Zhang, J., 2002. Drag reduction through self-similar bending of a flexible body. Nature 420(6915), 479-481. https://doi.org/10.1038/nature01232.
|
[2] |
Alben, S., Shelley, M., Zhang, J., 2004. How flexibility induces streamlining in a two-dimensional flow. Phys. Fluids 16(5), 1694-1713. https://doi.org/10.1063/1.1668671.
|
[3] |
Basnet, K., Constantinescu, G., 2019. Effect of a bottom gap on the mean flow and turbulence structure past vertical solid and porous plates situated in the vicinity of a horizontal channel bed. Phys. Rev. E 4(4), 044604. https://doi.org/10.1103/PhysRevFluids.4.044604.
|
[4] |
Bhamitipadi Suresh, D., Aju, E.J., Jin, Y., 2020. Turbulent boundary layer flow over two side-by-side wall-mounted cylinders: Wake characteristics and aerodynamic loads. Phys. Fluids 32(11), 115104. https://doi.org/10.1063/5.0029255.
|
[5] |
Bhamitipadi Suresh, D., Aju, E.J., Pham, D.T., Jin, Y., 2021. On the incipient sediment suspension downstream of three-dimensional wall-mounted obstacles. Phys. Fluids 33(8), 083307. https://doi.org/10.1063/5.0059969.
|
[6] |
Bouma, T.J., Van Duren, L.A., Temmerman, S., Claverie, T., Blanco-Garcia, A., Ysebaert, T., Herman, P.M.J., 2007. Spatial flow and sedi-mentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Cont. Shelf Res. 27(8), 1020-1045. https://doi.org/10.1016/j.csr.2005.12.019.
|
[7] |
Chamorro, L.P., Troolin, D.R., Lee, S.J., Arndt, R.E.A., Sotiropoulos, F., 2013. Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine. Exp. Fluid 54, 1459. https://doi.org/10.1007/s00348-013-1459-9.
|
[8] |
Cheng, N.S., 1997. Simplified settling velocity formula for sediment particle. J. Hydraul. Eng. 123(2), 149-152. https://doi.org/10.1061/(ASCE)0733.
|
[9] |
Cheng, N.S., Wei, M., Lu, Y., 2020. Critical flow velocity for incipient sediment motion in open channel flow with rigid emergent vegetation. J. Eng. Mech. 146(11), 04020123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001857.
|
[10] |
Ciraolo, G., Ferreri, G.B., Loggia, G.L., 2006. Flow resistance of Posidonia oceanica in shallow water. J. Hydraul. Res. 44(2), 189-202. https://doi.org/10.1080/00221686.2006.9521675.
|
[11] |
De Langre, E., 2008. Effects of wind on plants. Annu. Rev. Fluid Mech. 40(1), 141-168. https://doi.org/10.1146/annurev.fluid.40.111406.102135.
|
[12] |
Du, S., Wang, Z., Wang, R., Liang, B., Pan, X., 2022. Effects of flow intensity on local scour around a submerged square pile in a steady current. Phys. Fluids 34(8), 085126. https://doi.org/10.1063/5.0103556.
|
[13] |
Dupont, S., Bergametti, G., Simo€ens, S., 2014. Modeling aeolian erosion in presence of vegetation. J. Geophys. Res. Earth Surf. 119(2), 168-187. https://doi.org/10.1002/2013JF002875.
|
[14] |
Elliott, S.H., Tullos, D.D., Walter, C., 2019. Physical modeling of the feedbacks between a patch of flexible reed canarygrass (Phalaris arundinacea), wake hydraulics, and downstream deposition. Environ. Fluid Mech. 19, 255-277. https://doi.org/10.1007/s10652-018-9622-8.
|
[15] |
Fakhimjoo, M.S., Ardeshir, A., Behzadian, K., Karami, H., 2023. Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Sci. Eng. 16(1), 94-105. https://doi.org/10.1016/j.wse.2022.12.001.
|
[16] |
Follett, E.M., Nepf, H.M., 2012. Sediment patterns near a model patch of reedy emergent vegetation. Geomorphology 179, 141-151. https://doi.org/10.1016/j.geomorph.2012.08.006.
|
[17] |
Gosselin, F., De Langre, E., Machado-Almeida, B.A., 2010. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319-341. https://doi.org/10.1017/S0022112009993673.
|
[18] |
Gosselin, F.P., 2019. Mechanics of a plant in fluid flow. J. Exp. Bot. 70(14), 3533-3548. https://doi.org/10.1093/jxb/erz288.
|
[19] |
Guan, D.W., Xie, Y.X., Yao, Z.S., Chiew, Y.M., Zhang, J.S., Zheng, J.H., 2022. Local scour at offshore windfarm monopile foundations: A review. Water Sci. Eng. 15(1), 29-39. https://doi.org/10.1016/j.wse.2021.12.006.
|
[20] |
Hamed, A.M., Pagan-Vazquez, A., Khovalyg, D., Zhang, Z., Chamorro, L.P., 2017. Vortical structures in the near wake of tabs with various geometries. J. Fluid Mech. 825, 167-188. https://doi.org/10.1017/jfm.2017.384.
|
[21] |
Hu, Z., Lei, J., Liu, C., Nepf, H., 2018. Wake structure and sediment deposition behindmodels of submerged vegetationwith and withoutflexible leaves. Adv. Water Resour. 118, 28-38. https://doi.org/10.1016/j.advwatres.2018.06.001.
|
[22] |
Huai, W.X., Li, S., Katul, G.G., Liu, M.Y., Yang, Z.H., 2021. Flow dynamics and sediment transport in vegetated rivers: A review. J. Hydrodyn. 33(3), 400-420. https://doi.org/10.1007/s42241-021-0043-7.
|
[23] |
Jamali, M., Sehat, H., 2020. Experimental study of lateral dispersion in flexible aquatic canopy with emergent blade-like stems. Phys. Fluids 32(6). https://doi.org/10.1063/5.0010665.
|
[24] |
Jin, Y., Kim, J.T., Hong, L., Chamorro, L.P., 2018a. Flow-induced oscillations of low-aspect-ratio flexible plates with various tip geometries. Phys. Fluids 30(9), 097102. https://doi.org/10.1063/1.5046950.
|
[25] |
Jin, Y., Kim, J.T., Mao, Z., Chamorro, L.P., 2018b. On the couple dynamics of wall-mounted flexible plates in tandem. J. Fluid Mech. 852, R2. https://doi.org/10.1017/jfm.2018.580.
|
[26] |
Jin, Y., Kim, J.T., Fu, S., Chamorro, L.P., 2019. Flow-induced motions of flexible plates: Fluttering, twisting and orbital modes. J. Fluid Mech. 864, 273-285. https://doi.org/10.1017/jfm.2019.40.
|
[27] |
Judd, M.J., Raupach, M.R., Finnigan, J.J., 1996. A wind tunnel study of tur-bulent flow around single and multiple windbreaks, part I: Velocity fields. Boundary-Layer Meteorol. 80(1), 127-165. https://doi.org/10.1007/ BF00119015.
|
[28] |
Julien, P.Y., 2010. Erosion and Sedimentation. Cambridge University Press, Cambridge. Kawamura, T., Hiwada, M., Hibino, T., Mabuchi, I., Kumada, M., 1984. Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness. Bulletin of JSME 27(232), 2142-2151. https://doi.org/10.1299/jsme1958.27.2142.
|
[29] |
Kearney, M.S., Riter, J.A., Turner, R.E., 2011. Freshwater river diversions for marsh restoration in Louisiana: Twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 38(16), L16405. https://doi.org/10.1029/2011GL047847.
|
[30] |
Kemp, J.L., Harper, D.M., Crosa, G.A., 2000. The habitat-scale ecohydraulics of rivers. Ecol. Eng. 16(1), 17-29. https://doi.org/10.1016/S0925-8574(00)00073-2.
|
[31] |
Kenyon, R.A., Haywood, M.D.E., Heales, D.S., Loneragan, N.R., Pendrey, R.C., Vance, D.J., 1999. Abundance of fish and crustacean postlarvae on portable artificial seagrass units: Daily sampling provides quantitative estimates of the settlement of new recruits. J. Exp. Mar. Biol. Ecol. 232(2), 197-216. https://doi.org/10.1016/S0022-0981(98)00107-5.
|
[32] |
Liang, B., Du, S., Pan, X., Zhang, L., 2019. Local scour for vertical piles in steady currents: Review of mechanisms, influencing factors and empirical equations. J. Mar. Sci. Eng. 8(1), 4. https://doi.org/10.3390/jmse8010004.
|
[33] |
Liu, C., Nepf, H., 2016. Sediment deposition within and around a finite patch of model vegetation over a range of channel velocity. Water Resour. Res. 52(1), 600-612. https://doi.org/10.1002/2015WR018249.
|
[34] |
Liu, C., Yan, C., Sun, S., Lei, J., Nepf, H., Shan, Y., 2022. Velocity, turbulence, and sediment deposition in a channel partially filled with a Phragmites australis canopy. Water Resour. Res. 58(8), e2022WR032381. https://doi.org/10.1029/2022WR032381.
|
[35] |
Liu, C., Shan, Y., He, L., Li, F., Liu, X., Nepf, H., 2024. Plant morphology impacts bedload sediment transport. Geophys. Res. Lett. 51(12), e2024GL108800. https://doi.org/10.1029/2024GL108800.
|
[36] |
Lu, Y., Cheng, N.S., Wei, M., 2021. Formulation of bed shear stress for computing bed-load transport rate in vegetated flows. Phys. Fluids 33(11), 115105. https://doi.org/10.1063/5.0067851.
|
[37] |
Lu, Y., Liang, B., Yin, Z., Pan, X., Wang, J., Du, S., 2022a. Experimental study on time factor of scour around pile groups. Ocean. Eng. 261, 112125. https://doi.org/10.1016/j.oceaneng.2022.112125.
|
[38] |
Lu, Y., Wang, Z., Yin, Z., Du, S., Pan, X., Liang, B., 2022b. Experimental study on aspect ratio and velocity intensity of scour around submerged pile groups. Front. Mar. Sci. 9, 910723. https://doi.org/10.3389/fmars.2022.910723.
|
[39] |
Luhar, M., Nepf, H.M., 2011. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56(6), 2003-2017. https://doi.org/10.4319/lo.2011.56.6.2003.
|
[40] |
Manners, R.B., Wilcox, A.C., Kui, L., Lightbody, A.F., Stella, J.C., Sklar, L.S., 2015. When do plants modify fluvial processes? Plant-hydraulic in-teractions under variable flow and sediment supply rates. J. Geophys. Res. Earth Surf. 120(2), 325-345. https://doi.org/10.1002/2014JF003265.
|
[41] |
Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1), 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59).
|
[42] |
Moore, K.A., 2009. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. J. Coast Res. 2009(10045), 162-178. https://doi.org/10.2112/SI45-162.1.
|
[43] |
Morris, E.P., Peralta, G., Brun, F.G., Van Duren, L., Bouma, T.J., Perez-Llorens, J.L., 2008. Interaction between hydrodynamics and seagrass canopy structure: Spatially explicit effects on ammonium uptake rates. Limnol. Oceanogr. 53(4), 1531-1539. https://doi.org/10.4319/lo.2008.53.4.1531.
|
[44] |
Nepf, H.M., 2012a. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44(1), 123-142. https://doi.org/10.1146/annurev-fluid-120710-101048.
|
[45] |
Nepf, H.M., 2012b. Hydrodynamics of vegetated channels. J. Hydraul. Res. 50(3), 262-279. https://doi.org/10.1080/00221686.2012.696559.
|
[46] |
Neuman, C.M., Sanderson, R.S., Sutton, S., 2013. Vortex shedding and mor-phodynamic response of bed surfaces containing non-erodible roughness elements. Geomorphology 198, 45-56. https://doi.org/10.1016/j.geomorph.2013.05.011.
|
[47] |
Neuman, C.M., Bédard, O., 2015. A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface-mounted obstacle. J. Geophys. Res. Earth Surf. 120(9), 1824-1840. https://doi.org/ 10.1002/2015JF003475.
|
[48] |
Neuman, C.M., von Bulow, C., O’Brien, P., 2021. Air flow and scour patterns around erosion control elements. Aeolian Res. 50, 100689. https://doi.org/10.1016/j.aeolia.2021.100689.
|
[49] |
Ogawa, Y., Diosey, P.G., 1980. Surface roughness and thermal stratification effects on the flow behind a two-dimensional fence-II. A wind tunnel study and similarity considerations. Atmos. Environ. 14(11), 1309-1320. https://doi.org/10.1016/0004-6981(80)90232-2.
|
[50] |
Ortiz, A.C., Ashton, A., Nepf, H., 2013. Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J. Geophys. Res. Earth Surf. 118(4), 2585-2599. https://doi.org/10.1002/ 2013JF002858.
|
[51] |
Paola, C., Twilley, R.R., Edmonds, D.A., Kim, W., Mohrig, D., Parker, G., Viparelli, E., Voller, V.R., 2011. Natural processes in delta restoration: Application to the Mississippi Delta. Ann. Rev. Mar. Sci. 3(1), 67-91. https://doi.org/10.1146/annurev-marine-120709-142856.
|
[52] |
Park, C.W., Lee, S.J., 2000. Free end effects on the near wake flow structure behind a finite circular cylinder. J. Wind Eng. Ind. Aerod. 88(2-3), 231-246. https://doi.org/10.1016/S0167-6105(00)00051-9.
|
[53] |
Patton, E.G., Shaw, R.H., Judd, M.J., Raupach, M.R., 1998. Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol. 87, 275-307. https://doi.org/10.1023/A:1000945626163.
|
[54] |
Raeisi, F., Zomorodian, S.M.A., Zolghadr, M., Azamathulla, H.M., 2024. Sacrificial piles as a countermeasure against local scour around underwater pipelines. Water Sci. Eng. 17(2), 187-196. https://doi.org/10.1016/j.wse.2023.08.002.
|
[55] |
Raine, J.K., Stevenson, D.C., 1977. Wind protection by model fences in a simulated atmospheric boundary layer. J. Wind Eng. Ind. Aerod. 2(2), 159-180. https://doi.org/10.1016/0167-6105(77)90015-0.
|
[56] |
Roh, S.C., Park, S., 2003. Vortical flow over the free end surface of a finite circular cylinder mounted on a flat plate. Exp. Fluid 34(1), 63-67. https://doi.org/10.1007/s00348-002-0532-6.
|
[57] |
Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. J. Fluid Mech. 126, 147-165. https://doi.org/10.1017/S0022112083000087.
|
[58] |
Schulz, M., Kozerski, H.P., Pluntke, T., Rinke, K., 2003. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res. 37(3), 569-578. https://doi.org/10.1016/S0043-1354(02)00276-2.
|
[59] |
Sehat, H., Abdolahpour, M., Jamali, M., Ghisalberti, M., 2023. The impact of plant oscillation on dispersion in emergent aquatic canopies. Water Resour. Res. 59(3), e2022WR032035. https://doi.org/10.1029/2022WR032035.
|
[60] |
Shan, Y., Yan, C., Liu, J., Liu, C., 2023. Predicting velocity and turbulent kinetic energy inside an emergent Phragmites australis canopy with real morphology. Environ. Fluid Mech. 23(4), 943-963. https://doi.org/10.1007/s10652-023-09942-0.
|
[61] |
Sharma, A., Kumar, B., 2021. Comparison of flow turbulence over a sand bed and gravel bed channel. Water Supply 21(8), 4581-4592. https://doi.org/10.2166/ws.2021.201.
|
[62] |
Shi, Y., Jiang, B., Nepf, H.M., 2016. Influence of particle size and density, and channel velocity on the deposition patterns around a circular patch of model emergent vegetation. Water Resour. Res. 52(2), 1044-1055. https://doi.org/10.1002/2015WR018278.
|
[63] |
Short, F.T., 2003. World Atlas of Seagrasses. University of California Press, Oakland. Sukhodolov, A., Thiele, M., Bungartz, H., 1998. Turbulence structure in a river reach with sand bed. Water Resour. Res. 34(5), 1317-1334. https://doi.org/10.1029/98WR00269.
|
[64] |
Sumner, D., Heseltine, J.L., Dansereau, O.J.P., 2004. Wake structure of a finite circular cylinder of small aspect ratio. Exp. Fluid 37, 720-730. https://doi.org/10.1007/s00348-004-0862-7.
|
[65] |
Tanaka, N., Yagisawa, J., 2010. Flow structures and sedimentation characteristics around clump-type vegetation. J. Hydro-environ. Res. 4(1), 15-25. https://doi.org/10.1016/j.jher.2009.11.002.
|
[66] |
Tang, Z.H., Melville, B., Singhal, N., Shamseldin, A., Zheng, J.H., Guan, D.W., Cheng, L., 2022. Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Sci. Eng. 15(1), 15-28. https://doi.org/10.1016/j.wse.2021.12.010.
|
[67] |
Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M., Ysebaert, T., De Vriend, H.J., 2013. Ecosystem-based coastal defence in the face of global change. Nature 504(7478), 79-83. https://doi.org/10.1038/ nature12859.
|
[68] |
Tinoco, R.O., Coco, G., 2014. Observations of the effect of emergent vegetation on sediment resuspension under unidirectional currents and waves. Earth Surf. Dyn. 2(1), 83-96. https://doi.org/10.5194/esurf-2-83-2014.
|
[69] |
Tobin, N., Hamed, A.M., Chamorro, L.P., 2017. Fractional flow speed-up from porous windbreaks for enhanced wind-turbine power. Boundary-Layer Meteorol. 163, 253-271. https://doi.org/10.1007/s10546-016-0228-8.
|
[70] |
Tobin, N., Chamorro, L.P., 2018. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness. Phys. Rev. E 3(3), 033801. https://doi.org/10.1103/PhysRevFluids.3.033801.
|
[71] |
Tominaga, Y., Okaze, T., Mochida, A., 2018. Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle. J. Wind Eng. Ind. Aerod. 182, 262-271. https://doi.org/10.1016/j.jweia.2018.09.008.
|
[72] |
VanKatwijk,M.M., Bos,A.R., Hermus,D.C.R., Suykerbuyk,W., 2010.Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions. Estuar. Coast Shelf Sci. 89(2), 175-181. https://doi.org/10.1016/j.ecss.2010.06.008.
|
[73] |
Vogel, S., 1984. Drag and flexibility in sessile organisms. Am. Zool. 24(1), 37-44. https://doi.org/10.1093/icb/24.1.37.
|
[74] |
Vogel, S., 1989. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40(8), 941-948. https://doi.org/10.1093/jxb/40.8.941.
|
[75] |
Wang, H.F., Cao, H.L., Zhou, Y., 2014. POD analysis of a finite-length cylinder near wake. Exp. Fluid 55, 1790. https://doi.org/10.1007/s00348-014-1790-9.
|
[76] |
White, B.L., Nepf, H.M., 2007. Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 593, 1-32. https://doi.org/10.1017/S0022112007008415.
|
[77] |
Windham, L., Weis, J.S., Weis, P., 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine. Coast Shelf Sci. 56(1), 63-72. https://doi.org/10.1016/S0272-7714(02)00121-X.
|
[78] |
Xu, Y., Nepf, H., 2020. Measured and predicted turbulent kinetic energy in flow through emergent vegetation with real plant morphology. Water Resour. Res. 56(12), e2020WR027892. https://doi.org/10.1029/2020WR027892.
|
[79] |
Yager, E.M., Schmeeckle, M.W., 2013. The influence of vegetation on tur-bulence and bed load transport. J. Geophys. Res. Earth Surf. 118(3), 1585-1601. https://doi.org/10.1002/jgrf.20085.
|
[80] |
Yang, J.Q., Nepf, H.M., 2018. A turbulence-based bed-load transport model for bare and vegetated channels. Geophys. Res. Lett. 45(19), 10428-10436. https://doi.org/10.1029/2018GL079319.
|
[81] |
Yang, J.Q., Nepf, H.M., 2019. Impact of vegetation on bed load transport rate and bedform characteristics. Water Resour. Res. 55(7), 6109-6124. https://doi.org/10.1029/2018WR024404.
|
[82] |
Yao, W., An, H., Draper, S., Cheng, L., Harris, J.M., 2018. Experimental investigation of local scour around submerged piles in steady current. Coast. Eng. 142, 27-41. https://doi.org/10.1016/j.coastaleng.2018.08.015.
|
[83] |
Yauwenas, Y., Porteous, R., Moreau, D.J., Doolan, C.J., 2019. The effect of aspect ratio on the wake structure of finite wall-mounted square cylinders. J. Fluid Mech. 875, 929-960. https://doi.org/10.1017/jfm.2019.522.
|
[84] |
Zhang, X., He, G., Zhang, X., 2020. Fluid-structure interactions of single and dual wall-mounted 2D flexible filaments in a laminar boundary layer. J. Fluid Struct. 92, 102787. https://doi.org/10.1016/j.jfluidstructs.2019.102787.
|
[85] |
Zhao, M., Zhu, X., Cheng, L., Teng, B., 2012. Experimental study of local scour around subsea caissons in steady currents. Coast. Eng. 60, 30-40. https://doi.org/10.1016/j.coastaleng.2011.08.004.
|
[86] |
Zong, L., Nepf, H., 2010. Flow and deposition in and around a finite patch of vegetation. Geomorphology 116(3-4), 363-372. https://doi.org/10.1016/j.geomorph.2009.11.020.
|