Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Shan-shan Gao, Xin-hong Zhang, Ming-yue Geng, Jia-yu Tian. 2025: Effect of membrane material and pore size on membrane fouling during filtration of algae-laden water. Water Science and Engineering, 18(3): 335-344. doi: 10.1016/j.wse.2025.04.001
Citation: Shan-shan Gao, Xin-hong Zhang, Ming-yue Geng, Jia-yu Tian. 2025: Effect of membrane material and pore size on membrane fouling during filtration of algae-laden water. Water Science and Engineering, 18(3): 335-344. doi: 10.1016/j.wse.2025.04.001

Effect of membrane material and pore size on membrane fouling during filtration of algae-laden water

doi: 10.1016/j.wse.2025.04.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 52370035), the Natural Science Foundation of Hebei Province, China (Grant No. E2023202064), and the China Postdoctoral Science Foundation (Grant No. 2024M750717).

  • Received Date: 2024-08-21
  • Accepted Date: 2025-03-22
  • Available Online: 2025-10-15
  • Membrane filtration technology has been widely utilized for microalgae harvesting due to its stability and high efficiency. However, this technology faces challenges posed by membrane fouling caused by algal cells and extracellular organic matter (EOM), which are significantly influenced by membrane material and pore size. This study compared the fouling behavior of polyvinylidene fluoride (PVDF) membranes and ceramic membranes with similar pore sizes (0.20 mm and 0.16 mm, respectively) during the filtration of Microcystis aeruginosa. The ceramic membrane exhibited a lower transmembrane pressure (TMP) growth rate and reduced accumulation of surface foulants compared to the PVDF membrane, indicating its greater suitability for filtering algae-laden water. Further investigations employed membranes fabricated from aluminum oxide powders with grain sizes of 1 mm, 3 mm, 8 mm, and 10 mm, corresponding to membrane pore sizes of 0.08 mm, 0.16 mm, 0.66 mm, and 0.76 mm, respectively, to assess the impact of pore size on ceramic membrane fouling. The results revealed that increasing membrane pore size significantly lowered the TMP growth rate and reduced the irreversibility of membrane fouling. The extended Derja-guin—Landau—Verwey—Overbeek (XDLVO) analysis indicated that large pore sizes enhanced repulsion between the ceramic membrane and algal foulants, further alleviating membrane fouling. This investigation offers new insights into optimizing membrane material and pore size for efficient filtration of algae-laden water.

     

  • loading
  • [1]
    Akash, F.A., Shovon, S.M., Rahman, W., Rahman, M.A., Chakraborty, P., Prasetya, T.A.E., Monir, M.U., 2024. Advancements in ceramic membrane technology for water and wastewater treatment: A comprehensive explo-ration of current utilizations and prospective horizons. Desalination Water Treat. 319, 100569. https://doi.org/10.1016/j.dwt.2024.100569.
    [2]
    Ananthi, V., Balaji, P., Sindhu, R., Kim, S.H., Pugazhendhi, A., Arun, A., 2021. A critical review on different harvesting techniques for algal based biodiesel production. Sci. Total Environ. 780, 146467. https://doi.org/10.1016/j.scitotenv.2021.146467.
    [3]
    Babel, S., Takizawa, S., Ozaki, H., 2002. Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae. Water Res. 36(5), 1193-1202. https://doi.org/10.1016/s0043-1354(01)00333-5.
    [4]
    Baskaran, D., Saravanan, P., Nagarajan, L., Byun, H.S., 2024. An overview of technologies for capturing, storing, and utilizing carbon dioxide: Technology readiness, large-scale demonstration, and cost. Chem. Eng. J. 491, 151998. https://doi.org/10.1016/j.cej.2024.151998.
    [5]
    Briandet, R., Herry, J.M., Bellon-Fontaine, M.N., 2001. Determination of the van der Waals, electron donor and electron acceptor surface tension components of static Gram-positive microbial biofilms. Colloids Surf. B Biointerfaces 21(4), 299-310. https://doi.org/10.1016/s0927-7765(00)00213-7.
    [6]
    Chen, M., Heijman, S.G.J., Rietveld, L.C., 2024. Ceramic membrane filtration for oily wastewater treatment: Basics, membrane fouling and fouling control. Desalination 583, 117727. https://doi.org/10.1016/j.desal.2024.117727.
    [7]
    Chen, X., Ma, J., Chen, J., Wang, Z., 2023. Ceramic membrane filtration coupled with ozonation for water purification: Principles, applications and perspectives. J. Water Process Eng. 55, 104127. https://doi.org/10.1016/j.jwpe.2023.104127.
    [8]
    Chibowski, E., Perea-Carpio, R., 2001. A novel method for surface free-energy determination of powdered solids. J. Colloid Interface Sci. 240(2), 473-479. https://doi.org/10.1006/jcis.2001.7724.
    [9]
    Chiou, Y.T., Hsieh, M.L., Yeh, H.H., 2010. Effect of algal extracellular polymer substances on UF membrane fouling. Desalination 250(2), 648-652. https://doi.org/10.1016/j.desal.2008.02.043.
    [10]
    Chu, H., Huang, Z., Zhang, Z., Yan, X., Qiu, B., Xu, N., 2024. Integration of carbon emission reduction policies and technologies: Research progress on carbon capture, utilization and storage technologies. Sep. Purif. Technol. 343, 127153. https://doi.org/10.1016/j.seppur.2024.127153.
    [11]
    Gao, K., Li, T., Zhao, Q., Liu, W., Liu, J., Song, Y., Chu, H., Dong, B., 2021. UF fouling behavior of allelopathy of extracellular organic matter pro-duced by mixed algae co-cultures. Sep. Purif. Technol. 261, 118297. https://doi.org/10.1016/j.seppur.2020.118297.
    [12]
    Gao, S., Yin, X., Huang, R., Tian, J., 2024. Enhanced total nitrogen removal and membrane fouling control by increasing biomass in MBR equipped with ceramic membrane. Water Sci. Eng. 17(4), 352-360. https://doi.org/10.1016/j.wse.2024.01.001.
    [13]
    Han, Y., Wang, J., Xu, D., Song, J., Wang, H., Zhu, X., Luo, X., Yang, L., Li, G., Liang, H., 2023. Synergistic effect of potassium ferrate and ferrous iron for improving ultrafiltration performance in algae-laden water treatment. Water Res. 243, 120362. https://doi.org/10.1016/j.watres.2023.120362.
    [14]
    Henderson, R.K., Parsons, S.A., Jefferson, B., 2010. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res. 44(12), 3617-3624. https://doi.org/10.1016/j.watres.2010.04.016.
    [15]
    Her, N., Amy, G., Park, H.R., Song, M., 2004. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res. 38(6), 1427-1438. https://doi.org/10.1016/j.watres.2003.12.008.
    [16]
    Huang, R., Liu, Z., Yan, B., Li, Y., Li, H., Liu, D., Wang, P., Cui, F., Shi, W., 2020. Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting. J. Membr. Sci. 595, 117488. https://doi.org/10.1016/j.memsci.2019.117488.
    [17]
    Ji, C., Zhou, H., Deng, S.K., Chen, K.Y., Dong, X.Y., Xu, X.H., Cheng, L.H., 2021. Insight into the adhesion propensities of extracellular polymeric substances (EPS) on the abiotic surface using XDLVO theory. J. Environ. Chem. Eng. 9(6), 106563. https://doi.org/10.1016/j.jece.2021.106563.
    [18]
    Jiang, S., Zhang, Y., Zhao, F., Yu, Z., Zhou, X., Chu, H., 2018. Impact of transmembrane pressure (TMP) on membrane fouling in microalgae har-vesting with a uniform shearing vibration membrane system. Algal Res. 35, 613-623. https://doi.org/10.1016/j.algal.2018.10.003.
    [19]
    Jin, L., Ong, S.L., Ng, H.Y., 2010. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Water Res. 44(20), 5907-5918. https://doi.org/10.1016/j.watres.2010.07.014.
    [20]
    Kwon, B., Park, N., Cho, J., 2005. Effect of algae on fouling and efficiency of UF membranes. Desalination 179(1-3), 203-214. https://doi.org/10.1016/j.desal.2004.11.068.
    [21]
    Lee, N., Amy, G., Croue, J.P., 2006. Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter. Water Res. 40, 2357-2368. https://doi.org/10.1016/j.watres.2006.04.023.
    [22]
    Lian, J., Zhang, L., Tan, F., Xu, J., Mu, R., Wu, D., Liang, H., Cheng, X., 2022. Enhancing ultrafiltration of algal-rich water using ferrate activated with sodium percarbonate: Foulants variation, membrane fouling alleviation, and collaborative mechanism. Chemosphere 308, 136377. https://doi.org/10.1016/j.chemosphere.2022.136377.
    [23]
    Liang, H., Huang, X., Wang, H., Xu, W., Shi, B., 2021. The role of extra-cellular organic matter on the cyanobacteria ultrafiltration process. J. Environ. Sci. 110, 12-20. https://doi.org/10.1016/j.jes.2021.03.010.
    [24]
    Liu, L., Wang, Y., Liu, Y., Wang, J., Zheng, C., Zuo, W., Tian, Y., Zhang, J., 2024. Insight into key interactions between diverse factors and membrane fouling mitigation in anaerobic membrane bioreactor. Environ. Pollut. 347, 123750. https://doi.org/10.1016/j.envpol.2024.123750.
    [25]
    Ma, B., Xue, W., Bai, Y., Liu, R., Chen, W., Liu, H., Qu, J., 2020. Enhanced alleviation of ultrafiltration membrane fouling by regulating cake layer thickness with pre-coagulation during drinking water treatment. J. Membr. Sci. 596, 117732. https://doi.org/10.1016/j.memsci.2019.117732.
    [26]
    Nayak, S., Goveas, L.C., Selvaraj, R., Vinayagam, R., Manickam, S., 2022. Advances in the utilisation of carbon-neutral technologies for a sustainable tomorrow: A critical review and the path forward. Bioresour. Technol. 364, 128073. https://doi.org/10.1016/j.biortech.2022.128073.
    [27]
    Omar, N.M.A., Othman, M.H.D., Tai, Z.S., Kurniawan, T.A., Puteh, M.H., Jaafar, J., Rahman, M.A., Ismail, A.F., Rajamohan, N., Abdullah, H., et al., 2024. Recent strategies for enhancing the performance and lifespan of low-cost ceramic membranes in water filtration and treatment processes: A review. J. Water Process Eng. 62, 105399. https://doi.org/10.1016/ j.jwpe.2024.105399.
    [28]
    Oss, C.J., Good, R.J., Busscher, R.J., 1990. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids. J. Dispersion Sci. Technol. 11(1), 75-81. https://doi.org/10.1080/01932699008943237.
    [29]
    Qu, F., Liang, H., He, J., Ma, J., Wang, Z., Yu, H., Li, G., 2012a. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Res. 46(9), 2881-2890. https://doi.org/10.1016/j.watres.2012.02.045.
    [30]
    Qu, F., Liang, H., Tian, J., Yu, H., Chen, Z., Li, G., 2012b. Ultrafiltration (UF) membrane fouling caused by cyanobateria: Fouling effects of cells and extracellular organics matter (EOM). Desalination 293, 30-37. https://doi.org/10.1016/j.desal.2012.02.020.
    [31]
    Qu, F., Liang, H., Wang, Z.Z., Wang, H., Yu, H.R., Li, G.B., 2012c. Ultra-filtration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Res. 46(5), 1490-1500. https://doi.org/10.1016/j.watres.2011.11.051.
    [32]
    Suparmaniam, U., Lam, M.K., Uemura, Y., Lim, J.W., Lee, K.T., Shuit, S.H., 2019. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 115, 109361. https://doi.org/10.1016/j.rser.2019.109361.
    [33]
    Villacorte, L.O., Tabatabai, S.A.A., Anderson, D.M., Amy, G.L., Schippers, J.C., Kennedy, M.D., 2015. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 360, 61-80. https://doi.org/10.1016/j.desal.2015.01.007.
    [34]
    Vu, M.T., Vu, H.P., Nguyen, L.N., Semblante, G.U., Johir, A.H., Nghiem, L.D., 2020. A hybrid anaerobic and microalgal membrane reactor for energy and microalgal biomass production from wastewater. Environ. Technol. Innovat. 19, 100834. https://doi.org/10.1016/j.eti.2020.100834.
    [35]
    Wei, D., Tao, Y., Zhang, Z., Zhang, X., 2016. Effect of pre-ozonation on mitigation of ceramic UF membrane fouling caused by algal extracellular organic matters. Chem. Eng. J. 294, 157-166. https://doi.org/10.1016/ j.cej.2016.02.110.
    [36]
    Xu, H., Wang, H., Liang, Z., Chen, H., Yang, D., Tang, Z., Dai, X., 2023a. A novel biomineralization-inspired flocculation approach for harvesting high quality microalgal biomass: Dual action of cationic polyelectrolytes and nanosilica. Bioresour. Technol. 388, 129739. https://doi.org/10.1016/ j.biortech.2023.129739.
    [37]
    Xu, P., Li, J., Qian, J., Wang, B., Liu, J., Xu, R., Chen, P., Zhou, W., 2023b. Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality. Chemosphere 319, 137987. https://doi.org/10.1016/j.chemosphere.2023.137987.
    [38]
    Zhang, S., Chen, Y.S., Zang, X.M., Zhang, X.Z., 2020. Harvesting of Microcystis aeruginosa using membrane filtration: Influence of pore structure on fouling kinetics, algogenic organic matter retention and cake formation. Algal Res. 52, 102112. https://doi.org/10.1016/j.algal.2020.102112.
    [39]
    Zhang, X., Devanadera, M.C.E., Roddick, F.A., Fan, L., Dalida, M.L.P., 2016. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane. Water Res. 103, 391-400. https://doi.org/10.1016/j.watres.2016.07.061.
    [40]
    Zhang, X.Q., Bishop, P.L., Kinkle, B.K., 1999. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci. Technol. 39(7), 211-218. https://doi.org/10.1016/s0273-1223(99)00170-5.
    [41]
    Zhang, X.W., Ning, Z.Y., Wang, D.K., da Costa, J.C.D., 2014a. Processing municipal wastewaters by forward osmosis using CTA membrane. J. Membr. Sci. 468, 269-275. https://doi.org/10.1016/j.memsci.2014.06.016.
    [42]
    Zhang, Y., Zhao, Y., Chu, H., Zhou, X., Dong, B., 2014b. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: Filtration
    [43]
    performance, membrane fouling and cake behavior. Colloids Surf. B 113, 458-466. https://doi.org/10.1016/j.colsurfb.2013.09.046.
    [44]
    Zhang, Y., Fu, Q., 2018. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: A review. Sep. Purif. Technol. 203, 193-208. https://doi.org/10.1016/j.seppur.2018.04.040.
    [45]
    Zhang, Y., Jia, H., Wang, X., Ma, C., Xu, R., Fu, Q., Li, S., 2019. Comparing the effects of pre-deposited and pre-mixed powdered activated carbons on algal fouling during ultrafiltration. Algal Res. 44, 101687. https://doi.org/ 10.1016/j.algal.2019.101687.
    [46]
    Zhao, F., Chu, H., Yu, Z., Jiang, S., Zhao, X., Zhou, X., Zhang, Y., 2017. The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Sci. Total Environ. 587, 87-93. https://doi.org/ 10.1016/j.scitotenv.2017.02.035.
    [47]
    Zhao, F.C., Han, X.X., Shao, Z., Li, Z.C., Li, Z.X., Chen, D., 2022. Effects of different pore sizes on membrane fouling and their performance in algae harvesting. J. Membr. Sci. 641, 119916. https://doi.org/10.1016/ j.memsci.2021.119916.
    [48]
    Zhao, K., Jia, C., Li, Z., Du, X., Wang, Y., Li, J., Yao, Z., Yao, J., 2023. Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: A comprehensive review. Fuel 351, 128913. https://doi.org/10.1016/ j.fuel.2023.128913.
    [49]
    Zhou, H., Ji, C., Li, J.Q., Hu, Y.X., Xu, X.H., An, Y., Cheng, L.H., 2021. Understanding the interaction mechanism of algal cells and soluble algal products foulants in forward osmosis dewatering. J. Membr. Sci. 620, 118835. https://doi.org/10.1016/j.memsci.2020.118835.
    [50]
    Zhou, Z., Liu, C., Tian, L., Wang, H., Yang, Y., Wang, X., Cheng, X., 2023. Moderate pre-photocatalysis-enhanced coagulation alleviates ultrafiltration membrane fouling of algae-laden water. J. Water Process Eng. 56, 104406. https://doi.org/10.1016/j.jwpe.2023.104406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return