Citation: | Limin Teng, Takahiro Watari, Mami Nagai, Nur Adlin, Penpicha Satanwat, Masashi Hatamoto, Takashi Yamaguchi. 2025: Performance evaluation of downflow hanging sponge-upflow sludge blanket system for Oreochromis niloticus-Brassica oleracea aquaponic system. Water Science and Engineering, 18(3): 345-353. doi: 10.1016/j.wse.2025.04.004 |
[1] |
Adeoye, A.A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D.L., Davies, S.J., 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture 463, 61-70. https://doi.org/10.1016/j.aquaculture.2016.05.028.
|
[2] |
Adlin, N., Matsuura, N., Ohta, Y., Hirakata, Y., Maki, S., Hatamoto, M., Yamaguchi, T., 2017. A nitrogen removal system to limit water exchange for recirculating freshwater aquarium using DHS-USB reactor. Environ. Technol. 39(12), 1577-1585. https://doi.org/10.1080/09593330.2017. 1333530.
|
[3] |
Aerts, R., van der Peijl, M.J., 1993. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos 66(1), 144-147. https://doi.org/10.2307/3545208.
|
[4] |
Akamine, T., Nagai, M., Watari, T., Netsu, H., Adlin, N., Satanwat, P., Riquelme, C., Hatamoto, M., Yamaguchi, T., 2024. Nitrification characteristics and microbial community changes during conversion of freshwater to seawater in down-flow hanging sponge reactor. Ecotoxicol. Environ. Saf. 283, 116839. https://doi.org/10.1016/j.ecoenv.2024. 116839.
|
[5] |
Badiola, M., Mendiola, D., Bostock, J., 2012. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 51, 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004.
|
[6] |
Banerjee, P., Garai, P., Saha, N.C., Saha, S., Sharma, P., Maiti, A.K., 2023. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish. Water Air Soil Pollut. 234(6), 333. https://doi.org/10.1007/s11270-023-06260-5.
|
[7] |
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303.
|
[8] |
Chen, W.C., Ko, C.H., Su, Y.S., Lai, W.A., Shen, F.T., 2021. Metabolic potential and community structure of bacteria in an organic tea plantation. Appl. Soil Ecol. 157, 103762. https://doi.org/10.1016/j.apsoil.2020.103 762.
|
[9] |
Chen, Z., Wang, X., Chen, X., Chen, J., Gu, X., 2018. Rapid start-up and performance of denitrifying granular sludge in an upflow sludge blanket (USB) reactor treating high concentration nitrite wastewater. Biodegradation 29(6), 543-555. https://doi.org/10.1007/s10532-018-9851-z.
|
[10] |
Effendi, H., Wahyuningsih, S., Wardiatno, Y., 2016. The use of Nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Appl. Water Sci. 7(6), 3055-3063. https://doi.org/10.1007/s13201-016-0418-z.
|
[11] |
Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Franson, M.A.H., 2005. Standard Methods for the Examination of Water and Wastewater, Twenty-first Edition. American Publication Health Association, Washington DC.
|
[12] |
Fang, Y., Hu, Z., Zou, Y., Fan, J., Wang, Q., Zhu, Z., 2017. Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. J. Clean. Prod. 162, 1111-1117. https://doi.org/10.1016/j.jclepro.2017.06.158.
|
[13] |
Furukawa, A., Matsuura, N., Mori, M., Kawamata, M., Kusaka, J., Hatamoto, M., Yamaguchi, T., 2016. Development of a DHS-USB recirculating system to remove nitrogen from a marine fish aquarium. Aquac. Eng. 74, 174-179. https://doi.org/10.1016/j.aquaeng.2016.08.004.
|
[14] |
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., Thorarinsdottir, R., 2015. Challenges of sustainable and commercial aquaponics. Sustainability 7(4), 4199-4224. https://doi.org/10.3390/su7044199.
|
[15] |
Gross, A., Boyd, C.E., Wood, C.W., 2000. Nitrogen transformations and balance in channel catfish ponds. Aquac. Eng. 24(1), 1-14. https://doi.org/10.1016/s0144-8609(00)00062-5.
|
[16] |
Gutierrez-Wing, M.T., Malone, R.F., 2006. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquac. Eng. 34(3), 163-171. https://doi.org/10.1016/j.aquaeng.2005.08.003.
|
[17] |
Hargreaves, J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166(3-4), 181-212. https://doi.org/10.1016/s0044-8486(98)00298-1.
|
[18] |
Hatamoto, M., Okubo, T., Kubota, K., Yamaguchi, T., 2018. Characterization of downflow hanging sponge reactors with regard to structure, process function, and microbial community compositions. Appl. Microbiol. Biotechnol. 102(24), 10345-10352. https://doi.org/10.1007/s00253-018-9406-6.
|
[19] |
Hu, Z., Lee, J.W., Chandran, K., Kim, S., Brotto, A.C., Khanal, S.K., 2015. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 188, 92-98. https://doi.org/10.1016/j.biortech.2015.01.013.
|
[20] |
Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B., et al., 2015. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquacult. Environ. Interact. 7(2), 179-192. https://doi.org/10.3354/aei00146.
|
[21] |
Kotcharoen, W., Nagai, Z., Watari, T., Adlin, N., Hatamoto, M., Murakami, Y., Maharjan, N., Takeuchi, Y., Yamazaki, S., Yamaguchi, T., 2024. Integration of down-flow hanging sponge reactor to Oreochromis niloticus-Brassica Oleracea aquaponics system. J. Environ. Sci. Health Part A 59(7), 358-368. https://doi.org/10.1080/10934529.2024.2399444.
|
[22] |
Lennard, W., Goddek, S., 2019. Aquaponics: The basics. In: Goddeck, S., Joyce, A., Kotzen, B., Burnell, G.M. (Eds.), Aquaponics Food Production Systems. Springer International Publishing, Cham, pp. 113-143.
|
[23] |
Liu, X., Wang, Y., Liu, H., Zhang, Y., Zhou, Q., Wen, X., Guo, W., Zhang, Z., 2024. A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environ. Res. 262, 119793. https://doi.org/10.1016/j.envres.2024.119793.
|
[24] |
Losordo, T., Delong, D., Guerdat, T., 2009. Advances in technology and practice for land-based aquaculture systems: Tank-based recirculating systems for finfish production. In: Burnell, G., Allan, G. (Eds.), New Technologies in Aquaculture. Elsevier, Amsterdam, pp. 945-983.
|
[25] |
Love, D.C., Fry, J.P., Li, X., Hill, E.S., Genello, L., Semmens, K., Thompson, R.E., 2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435, 67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023.
|
[26] |
Narasingarao, P., Häggblom, M.M., 2006. Sedimenticola selenatireducens, gen. nov., sp. nov., an anaerobic selenate-respiring bacterium isolated from estuarine sediment. Syst. Appl. Microbiol. 29(5), 382-388. https://doi.org/10.1016/j.syapm.2005.12.011.
|
[27] |
Naylor, R., Fang, S., Fanzo, J., 2023. A global view of aquaculture policy. Food Policy 116, 102422. https://doi.org/10.1016/j.foodpol.2023.102422.
|
[28] |
Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish, C., 2004. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231(1-4), 361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015.
|
[29] |
Obondo, C.O., Kagali, R.N., Njogu, P.M., Kamau, J.N., 2025. Nitrogenous waste removal in closed freshwater recirculating aquaculture systems using an innovative DHS-USB bioreactor. J. Agricult. Food Res. 19, 101577. https://doi.org/10.1016/j.jafr.2024.101577.
|
[30] |
Okubo, T., Kubota, K., Yamaguchi, T., Uemura, S., Harada, H., 2016. Development of a new non-aeration-based sewage treatment technology: Performance evaluation of a full-scale down-flow hanging sponge reactor employing third-generation sponge carriers. Water Res. 102, 138-146. https://doi.org/10.1016/j.watres.2016.06.035.
|
[31] |
Oshiki, M., Aizuka, T., Netsu, H., Oomori, S., Nagano, A., Yamaguchi, T., Araki, N., 2020. Total ammonia nitrogen (TAN) removal performance of a recirculating down-hanging sponge (DHS) reactor operated at 10℃ to 20℃ with activated carbon. Aquaculture 520, 734963. https://doi.org/10.1016/j.aquaculture.2020.734963.
|
[32] |
Rakocy, J.E., 2012. Aquaponics-Integrating fish and plant culture. In: Tidwell, J.H. (Ed.), Aquaculture Production Systems. John Wiley & Sons, New York, pp. 344-386.
|
[33] |
Tanikawa, D., Nakamura, Y., Tokuzawa, H., Hirakata, Y., Hatamoto, M., Yamaguchi, T., 2018. Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification-denitrification using a down-flow hanging sponge reactor. Int. Biodeterior. Biodegrad. 132, 268-273. https://doi.org/10.1016/j.ibiod.2018.04.016.
|
[34] |
Teng, L., Watari, T., Fujimoto, T., Sato, N., Sato, T., Enoki, Y., Adlin, N., Hatamoto, M., Yamaguchi, T., 2024. Performance comparison of down-flow hanging sponge reactor and moving bed bioreactor for aquaponic systems. Bioresour. Technol. Rep. 28, 101963. https://doi.org/10.1016/j.biteb.2024.101963.
|
[35] |
Thomas, A., Konteles, S.J., Ouzounis, S., Papatheodorou, S., Tsakni, A., Houhoula, D., Tsironi, T., 2023. Bacterial community in response to packaging conditions in farmed gilthead seabream. Aquacult. Fisher. 8(4), 410-421. https://doi.org/10.1016/j.aaf.2021.09.002.
|
[36] |
Wandana, S., Adlin, N., Satanwat, P., Pungrasmi, W., Kotcharoen, W., Takeuchi, Y., Watari, T., Hatamoto, M., Hatamoto, M., Yamaguchi, T., 2024. Application of biofloc-down flow hanging sponge system to remove nitrogen components in recirculating zero water exchange aquaculture system. Bioresour. Technol. 413, 131496. https://doi.org/10.1016/j.biortech.2024.131496.
|
[37] |
Watari, T., Kotcharoen, W., Omine, T., Hatamoto, M., Araki, N., Oshiki, M., Mimura, K., Nagano, A., Yamaguchi, T., 2020. Formation of denitrifying granules in an upflow sludge blanket reactor with municipal sewage and sodium nitrate feeding. Environ. Technol. Innov. 19, 100861. https://doi.org/10.1016/j.eti.2020.100861.
|
[38] |
Watari, T., Nakamura, Y., Kotcharoen, W., Hirakata, Y., Satanwat, P., Pungrasmi, W., Powtongsook, S., Takeuchi, Y., Hatamoto, M., Yamaguchi, T., 2021. Application of down-flow hanging sponge-upflow sludge blanket system for nitrogen removal in Epinephelus bruneus closed recirculating aquaculture system. Aquaculture 532, 735997. https://doi.org/10.1016/j.aquaculture.2020.735997.
|
[39] |
Wongkiew, S., Koottatep, T., Polprasert, C., Prombutara, P., Jinsart, W., Khanal, S.K., 2021. Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. Waste Manag. 125, 67-76. https://doi.org/10.1016/j.wasman.2021.02.014.
|
[40] |
Xue, Y., Guo, J., Lian, J., Zhang, Y., Zhang, C., Zhao, Y., 2016. Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors. Biochem. Eng. J. 105, 136-143. https://doi.org/10.1016/j.bej.2015.09.010.
|
[41] |
Yang, H., Tan, T., Du, X., Feng, Q., Liu, Y., Tang, Y., Bai, G., Liu, Z., Xia, S., Song, S., et al., 2025. Advancements in freshwater aquaculture wastewater management: A comprehensive review. Aquaculture 594, 741346. https://doi.org/10.1016/j.aquaculture.2024.741346.
|
[42] |
Zhang, J., Wu, P., Hao, B., Yu, Z., 2011. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102(21), 9866-9869. https://doi.org/10.1016/j.biortech.2011.07.118.
|
[43] |
Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C., Fang, Y., 2016. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 210, 81-87. https://doi.org/10.1016/j.biortech.2015.12.079.
|