Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Limin Teng, Takahiro Watari, Mami Nagai, Nur Adlin, Penpicha Satanwat, Masashi Hatamoto, Takashi Yamaguchi. 2025: Performance evaluation of downflow hanging sponge-upflow sludge blanket system for Oreochromis niloticus-Brassica oleracea aquaponic system. Water Science and Engineering, 18(3): 345-353. doi: 10.1016/j.wse.2025.04.004
Citation: Limin Teng, Takahiro Watari, Mami Nagai, Nur Adlin, Penpicha Satanwat, Masashi Hatamoto, Takashi Yamaguchi. 2025: Performance evaluation of downflow hanging sponge-upflow sludge blanket system for Oreochromis niloticus-Brassica oleracea aquaponic system. Water Science and Engineering, 18(3): 345-353. doi: 10.1016/j.wse.2025.04.004

Performance evaluation of downflow hanging sponge-upflow sludge blanket system for Oreochromis niloticus-Brassica oleracea aquaponic system

doi: 10.1016/j.wse.2025.04.004
Funds:

This work was supported by the Japan Science and Technology Agency (Grant No. JPMJPF2211).

  • Received Date: 2024-11-24
  • Accepted Date: 2025-03-24
  • Available Online: 2025-10-15
  • Maintaining low nitrate concentrations in aquaponic systems is crucial for improving water quality and maximizing the growth efficiency of fish and vegetables. Downflow hanging sponge (DHS) and upflow sludge blanket (USB) reactors have shown potential for wastewater treatment, but their use in aquaponic systems is relatively underexplored, particularly for overall performance and efficiency. In this study, a DHS reactor was coupled with a denitrifying USB reactor in an aquaponic system comprising Nile tilapia (Oreochromis niloticus) and kale (Brassica oleracea L. var. acephala DC). The USB reactor achieved a nitrate removal rate of 80.8% ± 20.5%. The specific growth rate of tilapia was 6.11% per day from day 16 to day 30. On day 45, kale growth achieved stem lengths of (4.1 ± 1.2) cm, root lengths of (12.2 ± 6.0) cm, and leaf counts of (6.3 ± 2.0) leaves per plant. Changes in the microbial communities within the reactors positively contributed to denitrification, resulting in a nitrogen utilization efficiency of 88.3%. The DHSeUSB aquaponic system effectively maintained optimal water quality and stable parameters (pH, dissolved oxygen, and temperature). It regulated ammonia levels well and achieved 80.8% ± 20.5% removal rates for nitrite and nitrate after day 10. Microbial analysis highlighted significant shifts in the microbial communities within the DHS and USB reactors, under-scoring their critical roles in nitrification and denitrification. Therefore, the DHS—USB aquatic system has the potential to improve agricultural production efficiency and promote sustainable development.

     

  • loading
  • [1]
    Adeoye, A.A., Yomla, R., Jaramillo-Torres, A., Rodiles, A., Merrifield, D.L., Davies, S.J., 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture 463, 61-70. https://doi.org/10.1016/j.aquaculture.2016.05.028.
    [2]
    Adlin, N., Matsuura, N., Ohta, Y., Hirakata, Y., Maki, S., Hatamoto, M., Yamaguchi, T., 2017. A nitrogen removal system to limit water exchange for recirculating freshwater aquarium using DHS-USB reactor. Environ. Technol. 39(12), 1577-1585. https://doi.org/10.1080/09593330.2017. 1333530.
    [3]
    Aerts, R., van der Peijl, M.J., 1993. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos 66(1), 144-147. https://doi.org/10.2307/3545208.
    [4]
    Akamine, T., Nagai, M., Watari, T., Netsu, H., Adlin, N., Satanwat, P., Riquelme, C., Hatamoto, M., Yamaguchi, T., 2024. Nitrification characteristics and microbial community changes during conversion of freshwater to seawater in down-flow hanging sponge reactor. Ecotoxicol. Environ. Saf. 283, 116839. https://doi.org/10.1016/j.ecoenv.2024. 116839.
    [5]
    Badiola, M., Mendiola, D., Bostock, J., 2012. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 51, 26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004.
    [6]
    Banerjee, P., Garai, P., Saha, N.C., Saha, S., Sharma, P., Maiti, A.K., 2023. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish. Water Air Soil Pollut. 234(6), 333. https://doi.org/10.1007/s11270-023-06260-5.
    [7]
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303.
    [8]
    Chen, W.C., Ko, C.H., Su, Y.S., Lai, W.A., Shen, F.T., 2021. Metabolic potential and community structure of bacteria in an organic tea plantation. Appl. Soil Ecol. 157, 103762. https://doi.org/10.1016/j.apsoil.2020.103 762.
    [9]
    Chen, Z., Wang, X., Chen, X., Chen, J., Gu, X., 2018. Rapid start-up and performance of denitrifying granular sludge in an upflow sludge blanket (USB) reactor treating high concentration nitrite wastewater. Biodegradation 29(6), 543-555. https://doi.org/10.1007/s10532-018-9851-z.
    [10]
    Effendi, H., Wahyuningsih, S., Wardiatno, Y., 2016. The use of Nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Appl. Water Sci. 7(6), 3055-3063. https://doi.org/10.1007/s13201-016-0418-z.
    [11]
    Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Franson, M.A.H., 2005. Standard Methods for the Examination of Water and Wastewater, Twenty-first Edition. American Publication Health Association, Washington DC.
    [12]
    Fang, Y., Hu, Z., Zou, Y., Fan, J., Wang, Q., Zhu, Z., 2017. Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. J. Clean. Prod. 162, 1111-1117. https://doi.org/10.1016/j.jclepro.2017.06.158.
    [13]
    Furukawa, A., Matsuura, N., Mori, M., Kawamata, M., Kusaka, J., Hatamoto, M., Yamaguchi, T., 2016. Development of a DHS-USB recirculating system to remove nitrogen from a marine fish aquarium. Aquac. Eng. 74, 174-179. https://doi.org/10.1016/j.aquaeng.2016.08.004.
    [14]
    Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., Thorarinsdottir, R., 2015. Challenges of sustainable and commercial aquaponics. Sustainability 7(4), 4199-4224. https://doi.org/10.3390/su7044199.
    [15]
    Gross, A., Boyd, C.E., Wood, C.W., 2000. Nitrogen transformations and balance in channel catfish ponds. Aquac. Eng. 24(1), 1-14. https://doi.org/10.1016/s0144-8609(00)00062-5.
    [16]
    Gutierrez-Wing, M.T., Malone, R.F., 2006. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquac. Eng. 34(3), 163-171. https://doi.org/10.1016/j.aquaeng.2005.08.003.
    [17]
    Hargreaves, J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166(3-4), 181-212. https://doi.org/10.1016/s0044-8486(98)00298-1.
    [18]
    Hatamoto, M., Okubo, T., Kubota, K., Yamaguchi, T., 2018. Characterization of downflow hanging sponge reactors with regard to structure, process function, and microbial community compositions. Appl. Microbiol. Biotechnol. 102(24), 10345-10352. https://doi.org/10.1007/s00253-018-9406-6.
    [19]
    Hu, Z., Lee, J.W., Chandran, K., Kim, S., Brotto, A.C., Khanal, S.K., 2015. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 188, 92-98. https://doi.org/10.1016/j.biortech.2015.01.013.
    [20]
    Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., Wittstock, B., et al., 2015. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquacult. Environ. Interact. 7(2), 179-192. https://doi.org/10.3354/aei00146.
    [21]
    Kotcharoen, W., Nagai, Z., Watari, T., Adlin, N., Hatamoto, M., Murakami, Y., Maharjan, N., Takeuchi, Y., Yamazaki, S., Yamaguchi, T., 2024. Integration of down-flow hanging sponge reactor to Oreochromis niloticus-Brassica Oleracea aquaponics system. J. Environ. Sci. Health Part A 59(7), 358-368. https://doi.org/10.1080/10934529.2024.2399444.
    [22]
    Lennard, W., Goddek, S., 2019. Aquaponics: The basics. In: Goddeck, S., Joyce, A., Kotzen, B., Burnell, G.M. (Eds.), Aquaponics Food Production Systems. Springer International Publishing, Cham, pp. 113-143.
    [23]
    Liu, X., Wang, Y., Liu, H., Zhang, Y., Zhou, Q., Wen, X., Guo, W., Zhang, Z., 2024. A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environ. Res. 262, 119793. https://doi.org/10.1016/j.envres.2024.119793.
    [24]
    Losordo, T., Delong, D., Guerdat, T., 2009. Advances in technology and practice for land-based aquaculture systems: Tank-based recirculating systems for finfish production. In: Burnell, G., Allan, G. (Eds.), New Technologies in Aquaculture. Elsevier, Amsterdam, pp. 945-983.
    [25]
    Love, D.C., Fry, J.P., Li, X., Hill, E.S., Genello, L., Semmens, K., Thompson, R.E., 2015. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435, 67-74. https://doi.org/10.1016/j.aquaculture.2014.09.023.
    [26]
    Narasingarao, P., Häggblom, M.M., 2006. Sedimenticola selenatireducens, gen. nov., sp. nov., an anaerobic selenate-respiring bacterium isolated from estuarine sediment. Syst. Appl. Microbiol. 29(5), 382-388. https://doi.org/10.1016/j.syapm.2005.12.011.
    [27]
    Naylor, R., Fang, S., Fanzo, J., 2023. A global view of aquaculture policy. Food Policy 116, 102422. https://doi.org/10.1016/j.foodpol.2023.102422.
    [28]
    Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, G.P., Halling, C., Shpigel, M., Yarish, C., 2004. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231(1-4), 361-391. https://doi.org/10.1016/j.aquaculture.2003.11.015.
    [29]
    Obondo, C.O., Kagali, R.N., Njogu, P.M., Kamau, J.N., 2025. Nitrogenous waste removal in closed freshwater recirculating aquaculture systems using an innovative DHS-USB bioreactor. J. Agricult. Food Res. 19, 101577. https://doi.org/10.1016/j.jafr.2024.101577.
    [30]
    Okubo, T., Kubota, K., Yamaguchi, T., Uemura, S., Harada, H., 2016. Development of a new non-aeration-based sewage treatment technology: Performance evaluation of a full-scale down-flow hanging sponge reactor employing third-generation sponge carriers. Water Res. 102, 138-146. https://doi.org/10.1016/j.watres.2016.06.035.
    [31]
    Oshiki, M., Aizuka, T., Netsu, H., Oomori, S., Nagano, A., Yamaguchi, T., Araki, N., 2020. Total ammonia nitrogen (TAN) removal performance of a recirculating down-hanging sponge (DHS) reactor operated at 10℃ to 20℃ with activated carbon. Aquaculture 520, 734963. https://doi.org/10.1016/j.aquaculture.2020.734963.
    [32]
    Rakocy, J.E., 2012. Aquaponics-Integrating fish and plant culture. In: Tidwell, J.H. (Ed.), Aquaculture Production Systems. John Wiley & Sons, New York, pp. 344-386.
    [33]
    Tanikawa, D., Nakamura, Y., Tokuzawa, H., Hirakata, Y., Hatamoto, M., Yamaguchi, T., 2018. Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification-denitrification using a down-flow hanging sponge reactor. Int. Biodeterior. Biodegrad. 132, 268-273. https://doi.org/10.1016/j.ibiod.2018.04.016.
    [34]
    Teng, L., Watari, T., Fujimoto, T., Sato, N., Sato, T., Enoki, Y., Adlin, N., Hatamoto, M., Yamaguchi, T., 2024. Performance comparison of down-flow hanging sponge reactor and moving bed bioreactor for aquaponic systems. Bioresour. Technol. Rep. 28, 101963. https://doi.org/10.1016/j.biteb.2024.101963.
    [35]
    Thomas, A., Konteles, S.J., Ouzounis, S., Papatheodorou, S., Tsakni, A., Houhoula, D., Tsironi, T., 2023. Bacterial community in response to packaging conditions in farmed gilthead seabream. Aquacult. Fisher. 8(4), 410-421. https://doi.org/10.1016/j.aaf.2021.09.002.
    [36]
    Wandana, S., Adlin, N., Satanwat, P., Pungrasmi, W., Kotcharoen, W., Takeuchi, Y., Watari, T., Hatamoto, M., Hatamoto, M., Yamaguchi, T., 2024. Application of biofloc-down flow hanging sponge system to remove nitrogen components in recirculating zero water exchange aquaculture system. Bioresour. Technol. 413, 131496. https://doi.org/10.1016/j.biortech.2024.131496.
    [37]
    Watari, T., Kotcharoen, W., Omine, T., Hatamoto, M., Araki, N., Oshiki, M., Mimura, K., Nagano, A., Yamaguchi, T., 2020. Formation of denitrifying granules in an upflow sludge blanket reactor with municipal sewage and sodium nitrate feeding. Environ. Technol. Innov. 19, 100861. https://doi.org/10.1016/j.eti.2020.100861.
    [38]
    Watari, T., Nakamura, Y., Kotcharoen, W., Hirakata, Y., Satanwat, P., Pungrasmi, W., Powtongsook, S., Takeuchi, Y., Hatamoto, M., Yamaguchi, T., 2021. Application of down-flow hanging sponge-upflow sludge blanket system for nitrogen removal in Epinephelus bruneus closed recirculating aquaculture system. Aquaculture 532, 735997. https://doi.org/10.1016/j.aquaculture.2020.735997.
    [39]
    Wongkiew, S., Koottatep, T., Polprasert, C., Prombutara, P., Jinsart, W., Khanal, S.K., 2021. Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. Waste Manag. 125, 67-76. https://doi.org/10.1016/j.wasman.2021.02.014.
    [40]
    Xue, Y., Guo, J., Lian, J., Zhang, Y., Zhang, C., Zhao, Y., 2016. Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors. Biochem. Eng. J. 105, 136-143. https://doi.org/10.1016/j.bej.2015.09.010.
    [41]
    Yang, H., Tan, T., Du, X., Feng, Q., Liu, Y., Tang, Y., Bai, G., Liu, Z., Xia, S., Song, S., et al., 2025. Advancements in freshwater aquaculture wastewater management: A comprehensive review. Aquaculture 594, 741346. https://doi.org/10.1016/j.aquaculture.2024.741346.
    [42]
    Zhang, J., Wu, P., Hao, B., Yu, Z., 2011. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102(21), 9866-9869. https://doi.org/10.1016/j.biortech.2011.07.118.
    [43]
    Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C., Fang, Y., 2016. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 210, 81-87. https://doi.org/10.1016/j.biortech.2015.12.079.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return