| Citation: | A. Muhammad Afdhal Saputra, Farda Nata Syakira, Salwa Aqilah Luthfiyah, Safira Azkia, Muhammad Irvan Hasibuan, Marpongahtun, Andriayani, Ronn Goei, Sumiyyah Sabar, Saharman Gea. 2025: Graphene oxide-bacterial cellulose composites for enhanced adsorption of rhodamine B from aqueous solutions. Water Science and Engineering, 18(4): 474-485. doi: 10.1016/j.wse.2025.07.001 |
| [1] |
Amaturrahim, S.A., Gea, S., Nasution, D.Y., Hutapea, Y.A., 2018. Preparation of graphene oxide/bacterial cellulose nanocomposite via in situ process in agitated culture. Asian Journal of Chemistry 30(7), 1564-1568. https://doi.org/10.14233/ajchem.2018.21244.
|
| [2] |
Atykyan, N., Revin, V., Shutova, V., 2020. Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Express 10, 84. https://doi.org/10.1186/s13568-020-01020-8.
|
| [3] |
Bankole, O.M., Oyeneyin, O.E., Olaseni, S.E., Akeremale, O.K., Adanigbo, P., 2019. Kinetics and thermodynamic studies for rhodamine B dye removal onto graphene oxide nanosheets in simulated wastewater. American Journal of Applied Chemistry 7(1), 10-24. https://doi.org/10.11648/j.ajac.20190701.12.
|
| [4] |
Bello, O.S., Lasisi, B.M., Adigun, O.J., Ephraim, V., 2017. Scavenging rhodamine B dye using Moringa oleifera seed pod. Chemical Speciation and Bioavailability 29(1), 120-134. https://doi.org/10.1080/09542299.2017.1356694.
|
| [5] |
Blanco Parte, F.G., Santoso, S.P., Chou, C.C., Verma, V., Wang, H.T., Ismadji, S., Cheng, K.C., 2020. Current progress on the production, modification, and applications of bacterial cellulose. Crit. Rev. Biotechnol. 40, 397-414. https://doi.org/10.1080/07388551.2020.1713721.
|
| [6] |
Chang, S., Zhang, X., Wang, C., Bai, J., Li, X., Liang, W., Mao, Y., Cai, J., Li, Y., Jiang, Y., et al., 2024. Efficient adsorption of rhodamine B using synthesized Mg-Al hydrotalcite/sodium carboxymethylcellulose/sodium alginate hydrogel spheres: Performance and mechanistic analysis. Heliyon 10(9), e30345. https://doi.org/10.1016/j.heliyon.2024.E30345.
|
| [7] |
Chu, T.P.M., Nguyen, N.T., Vu, T.L., Dao, T.H., Dinh, L.C., Nguyen, H.L., Hoang, T.H., Le, T.S., Pham, T.D., 2019. Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal. Materials 12(3), 450. https://doi.org/10.3390/ma12030450.
|
| [8] |
da Silva, P.M.M., Camparotto, N.G., Figueiredo Neves, T., Mastelaro, V.R., Nunes, B., Siqueira Franco Picone, C., Prediger, P., 2021. Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: Batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 16, 100584. https://doi.org/10.1016/j.enmm.2021.100584.
|
| [9] |
Dash, P., Rout, T.K., Biswal, S.K., 2020. Study on the preparation of GO and RGO by chemical and mechanical exfoliation of natural graphite for the aluminum industry. Journal of Sustainable Metallurgy 6, 26-33. https://doi.org/10.1007/s40831-019-00251-9.
|
| [10] |
de Almada Vilhena, A.O., Lima, K.M.M., de Azevedo, L.F.C., Rissino, J.D., de Souza, A.C.P., Nagamachi, C.Y., Pieczarka, J.C., 2023. The synthetic dye malachite green found in food induces cytotoxicity and genotoxicity in four different mammalian cell lines from distinct tissues. Toxicol. Res. 12(4), 693-701. https://doi.org/10.1093/toxres/tfad059.
|
| [11] |
Dhar, P., Etula, J., Bankar, S.B., 2019. In situ bioprocessing of bacterial cellulose with graphene: Percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Appl. Bio Mater. 2, 4052-4066. https://doi.org/10.1021/acsabm.9b00581.
|
| [12] |
Ding, X., Gutierrez, L., Croue, J.P., Li, M., Wang, L., Wang, Y., 2020. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison. Chemosphere 253, 126655. https://doi.org/10.1016/j.chemosphere.2020.126655.
|
| [13] |
Ghozali, M., Meliana, Y., Chalid, M., 2021. Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Mater. Today Proc. 44, 2131-2134. https://doi.org/10.1016/j.matpr.2020.12.274.
|
| [14] |
Han, Z., Sun, L., Chu, Y., Wang, J., Wei, C., Jiang, Q., Han, C., Yan, H., Song, X., 2023. States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions. Chin. J. Chem. Eng. 63, 197-208. https://doi.org/10.1016/j.cjche.2023.05.005.
|
| [15] |
Hidayah, N.M.S., Liu, W.W., Lai, C.W., Noriman, N.Z., Khe, C.S., Hashim, U., Lee, H.C., 2017. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 1892, 150002. https://doi.org/10.1063/1.5005764.
|
| [16] |
Jayasuriya, D.M.N.H., Nadarajah, K., 2023. Understanding association between methylene blue dye and biosorbent: Palmyrah sprout casing in adsorption process in aqueous phase. Water Science and Engineering 16(2), 154-164. https://doi.org/10.1016/j.wse.2022.12.006.
|
| [17] |
Jinendra, U., Bilehal, D., Nagabhushana, B.M., Kumar, A.P., 2021. Adsorptive removal of rhodamine B dye from aqueous solution by using graphene-based nickel nanocomposite. Heliyon 7, e06851. https://doi.org/10.1016/j.heliyon.2021.e06851.
|
| [18] |
Jirickova, A., Jankovsky, O., Sofer, Z., Sedmidubsky, D., 2022. Synthesis and applications of graphene oxide. Materials 15(3), 920. https://doi.org/10.3390/ma15030920.
|
| [19] |
Joshi, P., Sharma, O.P., Ganguly, S.K., Srivastava, M., Khatri, O.P., 2022. Fruit waste-derived cellulose and graphene-based aerogels: Plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 608, 2870-2883. https://doi.org/10.1016/j.jcis.2021.11.016.
|
| [20] |
Khamparia, S., Jaspal, D.K., 2017. Xanthium strumarium L. seed hull as a zero cost alternative for rhodamine B dye removal. J. Environ. Manage. 197, 498-506. https://doi.org/10.1016/j.jenvman.2017.03.099.
|
| [21] |
Khan, A., Sapakal, S.N., Kadam, A., 2024. Comparative analysis of graphene oxide (GO) reduction methods: Impact on crystallographic, morphological, and optical properties. Graphene and 2D Materials 9, 101-109. https://doi.org/10.1007/s41127-024-00072-y.
|
| [22] |
Khawaja, H., Zahir, E., Asghar, Asghar, M.A., Arif, M.A., 2021. Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachite green. Int. J. Biol. Macromol. 167, 23-34. https://doi.org/10.1016/j.ijbiomac.2020.11.137.
|
| [23] |
Kime, G., Zhou, K.G., Hardman, S.J.O., Nair, R.R., Novoselov, K.S., Andreeva, D.V., Binks, D.J., 2019. pH dependence of ultrafast charge dynamics in graphene oxide dispersions. The Journal of Physical Chemistry C 123(6), 10677-10681. https://doi.org/10.1021/acs.jpcc.9b01060.
|
| [24] |
King, A.A.K., Davies, B.R., Noorbehesht, N., Newman, P., Church, T.L., Harris, A.T., Razal, J.M., Minett, A.I., 2016. A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 1-6. https://doi.org/10.1038/srep19491.
|
| [25] |
Komaee, K., Friedman, G., Dan, N., 2006. The kinetics and saturation of reversible adsorption on patterned (heterogeneous) surfaces. Langmuir 22(3), 871-876. https://doi.org/10.1021/la0519608.
|
| [26] |
Kumar, N., Verma, S., Kumar, P., Khan, A.A., Park, J., Srivastava, V.C., 2024. Efficient one-pot two-step electrochemical synthesis of highly oxidized graphene oxide for enhanced energy and environmental applications: Structure elucidation through DFT simulations. Carbon 218, 118722. https://doi.org/10.1016/j.carbon.2023.118722.
|
| [27] |
Le, H.V., Dao, N.T., Bui, H.T., Kim Le, P.T., Le, K.A., Tuong Tran, A.T., Nguyen, K.D., Mai Nguyen, H.H., Ho, P.H., 2023. Bacterial cellulose aerogels derived from pineapple peel waste for the adsorption of dyes. ACS Omega 8(7), 33412-33425. https://doi.org/10.1021/acsomega.3c03130.
|
| [28] |
Lin, X., Wu, J., Shi, Q., Gu, W., 2024. Preparation and enhanced photocatalytic performance of N-TiO2/g-C3N4 heterostructure for rhodamine B degradation. Water Science and Engineering 17(4), 371-377. https://doi.org/10.1016/j.wse.2023.12.007.
|
| [29] |
Liu, J., Chen, S., Liu, Y., Zhao, B., 2022. Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society 26, 101560. https://doi.org/10.1016/j.jscs.2022.101560.
|
| [30] |
Liu, Q., Ma, C., Liu, X.P., Wei, Y.P., Mao, C.J., Zhu, J.J., 2017. A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosens. Bioelectron. 92, 273-279. https://doi.org/10.1016/j.bios.2017.02.027.
|
| [31] |
Luo, M.T., Li, H.L., Huang, C., Zhang, H.R., Xiong, L., Chen, X.F., Chen, X.D., 2018. Cellulose-based absorbent production from bacterial cellulose and acrylic acid: Synthesis and performance. Polymers 10(7), 702. https://doi.org/10.3390/polym10070702.
|
| [32] |
Lv, P., Zhou, H., Mensah, A., Feng, Q., Lu, K., Huang, J., Li, D., Cai, Y., Lucia, L., Wei, Q., 2019. In situ 3D bacterial cellulose/nitrogen-doped graphene oxide quantum dot-based membrane fluorescent probes for aggregation-induced detection of iron ions. Cellulose 26, 6073-6086. https://doi.org/10.1007/s10570-019-02476-z.
|
| [33] |
Ma, X., Yuan, H., Qiao, Q., Zhang, S., Tao, H., 2023. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids Surf. A Physicochem. Eng. Asp. 664, 131099. https://doi.org/10.1016/j.colsurfa.2023.131099.
|
| [34] |
Melati, I., Rahayu, G., Henny, C., 2022. The recent status of synthetic dyes mycoremediation: A review. IOP Conf. Ser. Earth Environ. Sci. 1062, 012029. https://doi.org/10.1088/1755-1315/1062/1/012029.
|
| [35] |
Meng, X., Wang, S., Gao, W., Han, W., Lucia, L.A., 2020. Thermal pyrolysis characteristics and kinetic analysis of nanofibrillated cellulose/graphene oxide composites. Bioresources 15, 4851-4865. https://doi.org/10.15376/biores.15.3.4851-4865.
|
| [36] |
Mondal, S., Ghosh, S., 2024. Quantifying defects in graphene oxide structures. Carbon Trends 14, 100323. https://doi.org/10.1016/j.cartre.2024.100323.
|
| [37] |
Muhammad Afdhal Saputra, A., Marpongahtun, Andriayani, Alemin Barus, D., Goei, R., Tok, A., Ibadurrahman, M., Ramadhan, H.T.S.R., Irvan Hasibuan, M., Peijs, T., et al., 2025. Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode. Mater. Sci. Energy Technol. 8, 66-81. https://doi.org/10.1016/j.mset.2024.08.001.
|
| [38] |
Navarathna, C.M., Dewage, N.B., Karunanayake, A.G., Farmer, E.L., Perez, F., Hassan, E.B., Mlsna, T.E., Pittman, C.U., 2020. Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. J. Inorg. Organomet. Polym. Mater. 30, 214-229. https://doi.org/10.1007/s10904-019-01322-w.
|
| [39] |
Nuengmatcha, P., Kuyyogsuy, A., Porrawatkul, P., Pimsen, R., Chanthai, S., Nuengmatcha, P., 2023. Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst. Water Science and Engineering 16(3), 243-251. https://doi.org/10.1016/j.wse.2023.01.004.
|
| [40] |
Nyakairu, G.W.A., Kapanga, P.M., Ntale, M., Lusamba, S.N., Tshimanga, R.M., Ammari, A., Shehu, Z., 2024. Synthesis, characterization and application of zeolite/Bi2O3 nanocomposite in removal of rhodamine B dye from wastewater. Cleaner Water 1, 100004. https://doi.org/10.1016/j.clwat.2024.100004.
|
| [41] |
Ojemaye, M.O., Okoh, A.I., 2019. Multiple nitrogen functionalized magnetic nanoparticles as an efficient adsorbent: Synthesis, kinetics, isotherm and thermodynamic studies for the removal of rhodamine B from aqueous solution. Sci. Rep. 9, 9672. https://doi.org/10.1038/s41598-019-45293-x.
|
| [42] |
Orozco, S., Montiel, E., Valencia, J.E., Gonzalez, R.G., del Carmen Chavez Parga, M., Cortes, J.A., Rivero, M., 2024. Effective RhB dye removal using sustainable natural bioadsorbents synthesized from avocado seed and skin. Water Air Soil Pollut. 235, 1-26. https://doi.org/10.1007/s11270-024-06952-6.
|
| [43] |
Oyekanmi, A.A., Ahmad, A., Hossain, K., Rafatullah, M., 2019. Adsorption of rhodamine B dye from aqueous solution onto acid treated banana peel: Response surface methodology, kinetics and isotherm studies. PLoS One 14(5), e0216878. https://doi.org/10.1371/journal.pone.0216878.
|
| [44] |
Phan, H.T., Nguyen, K.D., Nguyen, H.H.M., Dao, N.T., Le, P.T.K., Le, H.V., 2023. Nata de coco as an abundant bacterial cellulose resource to prepare aerogels for the removal of organic dyes in water. Bioresour. Technol. Rep. 24, 101613. https://doi.org/10.1016/j.biteb.2023.101613.
|
| [45] |
Purwandari, V., Gea, S., Wirjosentono, B., Haryono, A., 2018. Synthesis of graphene oxide from the Sawahlunto-Sijunjung coal via modified hummers method. AIP Conf. Proc. 2049, 020065. https://doi.org/10.1063/1.5082470.
|
| [46] |
Purwandari, V., Gea, S., Wirjosentono, B., Haryono, A., Rahayu, S., Hutapea, Y.A., 2020. The exfoliation process of Sawahlunto coal into graphene through the modified Hummer method. Rasayan Journal of Chemistry 13, 593-600. https://doi.org/10.31788/RJC.2020.1315473.
|
| [47] |
Rashidian, E., Babaeipour, V., Chegeni, A., Khodamoradi, N., Omidi, M., 2021. Synthesis and characterization of bacterial cellulose/graphene oxide nano-biocomposites. Polym. Compos. 42(9), 4698-4706. https://doi.org/10.1002/pc.26179.
|
| [48] |
Rauf, M.A., Salman Ashraf, S., 2012. Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal 209, 520-530. https://doi.org/10.1016/j.cej.2012.08.015.
|
| [49] |
Ristea, M.E., Zarnescu, O., 2023. Indigo carmine: Between necessity and concern. Journal of Xenobiotics 13(3), 509-528 https://doi.org/10.3390/jox13030033.
|
| [50] |
Sahar, J., Naeem, A., Farooq, M., Zareen, S., Farida, Sherazi, S., 2021. Kinetic studies of graphene oxide towards the removal of rhodamine B and Congo red. Int. J. Environ. Anal. Chem. 101, 1258-1272. https://doi.org/10.1080/03067319.2019.1679802.
|
| [51] |
Saigl, Z.M., Ahmed, A.M., 2021. Separation of rhodamine B dye from aqueous media using natural pomegranate peels. Indonesian Journal of Chemistry 21, 212-224. https://doi.org/10.22146/ijc.58592.
|
| [52] |
Sarojini, G., Venkatesh Babu, S., Rajamohan, N., Rajasimman, M., 2022. Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environ. Res. 204, 112132. https://doi.org/10.1016/j.envres.2021.112132.
|
| [53] |
Shao, W., Liu, H., Liu, X., Wang, S., Zhang, R., 2015. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv. 5, 4795-4803. https://doi.org/10.1039/c4ra13057j.
|
| [54] |
Si, J., Liu, Y., Jiang, Y., Chen, Y., Chen, A., Jin, M., 2024. pH-dependent fluorescence quenching of rhodamine 6G by graphene oxide: A comprehensive spectroscopic study. Luminescence 39(12), e70055. https://doi.org/10.1002/bio.70055.
|
| [55] |
Singh, S., Parveen, N., Gupta, H., 2018. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environ. Technol. Innov. 12, 189-195. https://doi.org/10.1016/j.eti.2018.09.001.
|
| [56] |
Skjolding, L.M., Joergensen, L.vG., Dyhr, K.S., Koppl, C.J., McKnight, U.S., Bauer-Gottwein, P., Mayer, P., Bjerg, P.L., Baun, A., 2021. Assessing the aquatic toxicity and environmental safety of tracer compounds rhodamine B and rhodamine WT. Water Res. 197, 117109. https://doi.org/10.1016/j.watres.2021.117109.
|
| [57] |
Solayman, H.M., Hossen, M.A., Abd Aziz, A., Yahya, N.Y., Leong, K.H., Sim, L.C., Monir, M.U., Zoh, K.D., 2023. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 11, 109610. https://doi.org/10.1016/j.jece.2023.109610.
|
| [58] |
Song, S., Liu, Z., Zhang, J., Jiao, C., Ding, L., Yang, S., 2020. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite. Materials 13(17), 3703. https://doi.org/10.3390/ma13173703.
|
| [59] |
Thakur, A., Kaur, H., 2017. Response surface optimization of rhodamine B dye removal using paper industry waste as adsorbent. International Journal of Industrial Chemistry 8, 175-186. https://doi.org/10.1007/s40090-017-0113-4.
|
| [60] |
Thangaraj, N., John, N.J., Sambandam, C.G., 2023. An improved method of synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) nanocomposites. Int. J. Curr. Res. Rev. 15, 10-15. https://doi.org/10.31782/ijcrr.2023.15503.
|
| [61] |
Thorat, M.N., Jagtap, A., Dastager, S.G., 2021. Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes. Journal of Polymer Research 28, 354. https://doi.org/10.1007/s10965-021-02702-y.
|
| [62] |
Walling, B., Bharali, P., Ramachandran, D., Viswanathan, K., Hazarika, S., Dutta, N., Mudoi, P., Manivannan, J., Manjunath Kamath, S., Kumari, S., et al., 2023. In-situ biofabrication of bacterial nanocellulose (BNC)/graphene oxide (GO) nano-biocomposite and study of its cationic dyes adsorption properties. Int. J. Biol. Macromol. 251, 126309. https://doi.org/10.1016/j.ijbiomac.2023.126309.
|
| [63] |
Yang, J., Shojaei, S., Shojaei, S., 2022a. Removal of drug and dye from aqueous solutions by graphene oxide: Adsorption studies and chemometrics methods. npj Clean Water 5, 5. https://doi.org/10.1038/s41545-022-00148-3.
|
| [64] |
Yang, J., Wang, J., Zhang, X., Chen, M., Tian, B., Wang, N., Huang, X., Hao, H., 2022b. Exploration of hydrogen-bonded organic framework (HOF) as highly efficient adsorbent for rhodamine B and methyl orange. Microporous and Mesoporous Materials 330, 111624. https://doi.org/10.1016/j.micromeso.2021.111624.
|
| [65] |
Yeh, T.F., Chen, S.J., Teng, H., 2015. Synergistic effect of oxygen and nitrogen functionalities for graphene-based quantum dots used in photocatalytic H2 production from water decomposition. Nano Energy 12, 476-485. https://doi.org/10.1016/j.nanoen.2015.01.021.
|
| [66] |
Zghal, S., Jedidi, I., Cretin, M., Cerneaux, S., Abdelmouleh, M., 2023. Adsorptive removal of rhodamine B dye using carbon graphite/CNT composites as adsorbents: Kinetics, isotherms and thermodynamic study. Materials 16(3), 1015. https://doi.org/10.3390/ma16031015.
|
| [67] |
Zhu, C., Liu, P., Mathew, A.P., 2017. Self-assembled TEMPO cellulose nanofibers: Graphene oxide-based biohybrids for water purification. ACS Appl. Mater. Interfaces 9(24), 21048-21058. https://doi.org/10.1021/acsami.7b06358.
|