Volume 18 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
Siva Krishna Reddy, Venu Chandra. 2025: Prediction models for scour depth around circular compound bridge piers. Water Science and Engineering, 18(3): 378-390. doi: 10.1016/j.wse.2025.07.004
Citation: Siva Krishna Reddy, Venu Chandra. 2025: Prediction models for scour depth around circular compound bridge piers. Water Science and Engineering, 18(3): 378-390. doi: 10.1016/j.wse.2025.07.004

Prediction models for scour depth around circular compound bridge piers

doi: 10.1016/j.wse.2025.07.004
  • Received Date: 2024-12-29
  • Accepted Date: 2025-06-22
  • Available Online: 2025-10-15
  • Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability. Accurate prediction of scour depth around compound piers remains challenging for bridge engineers. This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design. Experiments were conducted under clear-water conditions using two circular piers: (1) a uniform pier (with a diameter of D) and (2) a compound pier consisting of a uniform pier resting on a circular foundation (with a foundation diameter (Df) of 2D) positioned at various elevations (Z) relative to the channel bed. Results showed that foundation elevation significantly affected scour depth. Foundations at or below the bed (Z/D ≥ 0) reduced scour, while those projecting into the flow field (Z/D < 0) increased scour. The optimal foundation elevation was found to be 0.1D below the bed level, yielding a 57% reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices. In addition, regression, artificial neural network (ANN), and M5 model tree models were developed using experimental data from this and previous studies. The M5 model outperformed the traditional HEC-18 equation, regression, and ANN models, with a coefficient of determination greater than 0.85. Sensitivity analysis indicated that flow depth, foundation elevation, and diameter significantly influenced scour depth prediction, whereas sediment size had a lesser impact.

     

  • loading
  • [1]
    Alipour, A., Yarahmadi, J., Mahdavi, M., 2014. Comparative study of M5 model tree and artificial neural network in estimating reference evapo-transpiration using MODIS products. J. Climatol. 2014, 839205. https://doi.org/10.1155/2014/839205.
    [2]
    Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., Clopper, P.E., 2012. Evaluating Scour at Bridges (No. FHWA-HIF-12-003). National Highway Institute, Washington DC.
    [3]
    ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5(2), 115-123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).
    [4]
    Ataie-Ashtiani, B., Baratian-Ghorghi, Z., Beheshti, A.A., 2010. Experimental investigation of clear-water local scour of compound piers. J. Hydraul. Eng. 136(6), 343-351. https://doi.org/10.1061/(ASCE)0733-9429(2010)136:6(343).
    [5]
    Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif. Intell. 20(3), 401-414. https://doi.org/10.1016/j.engappai.2006.06.012.
    [6]
    Bhattacharya, A., Abraham, A., Vasant, P., Grosan, C., 2007. Evolutionary artificial neural network for selecting flexible manufacturing systems under disparate level-of-satisfaction of decision maker. Int. J. Innovat. Comput. IInf. Control 3(1), 131-140.
    [7]
    Chang, W.Y., Constantinescu, G., Lien, H.C., Tsai, W.F., Lai, J.S., Loh, C.H., 2013. Flow structure around bridge piers of varying geometrical complexity. J. Hydraul. Eng. 139(8), 812-826. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000742.
    [8]
    Chiew, Y.M., 1984. Local Scour at Bridge Piers. Ph.D. Dissertation. University of Auckland, Auckland.
    [9]
    Coleman, S.E., 2005. Clearwater local scour at complex piers. J. Hydraul. Eng. 131(4), 330-334. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:4(330).
    [10]
    Dey, S., 2014. Fluvial Hydrodynamics. Springer, Berlin. https://doi.org/10.1007/978-3-642-19062-9.
    [11]
    Etemad-Shahidi, A., Ghaemi, N., 2011. Model tree approach for prediction of pile groups scour due to waves. Ocean Eng. 38(13), 1522-1527. https://doi.org/10.1016/j.oceaneng.2011.07.012.
    [12]
    Etemad-Shahidi, A., Bonakdar, L., Jeng, D.S., 2015. Estimation of scour depth around circular piers: Applications of model tree. J. Hydroinform. 17(2), 226-238. https://doi.org/10.2166/hydro.2014.151.
    [13]
    Ettema, R., 1980. Scour at Bridge Piers. Ph.D. Dissertation. University of Auckland, Auckland.
    [14]
    Ettema, R., Melville, B.W., Barkdoll, B., 1998. Scale effect in pier-scour experiments. J. Hydraul. Eng. 124(6), 639-642. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(639).
    [15]
    Fakhimjoo, M.S., Ardeshir, A., Behzadian, K., Karami, H., 2023. Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Sci. Eng. 16(1), 94-105. https://doi.org/10.1016/j.wse.2022.12.001.
    [16]
    Ferraro, D., Tafarojnoruz, A., Gaudio, R., Cardoso, A.H., 2013. Effects of pile cap thickness on the maximum scour depth at a complex pier. J. Hydraul. Eng. 139 (5), 482-491. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000704.
    [17]
    Ghani, A.A., Mohammadpour, R., 2016. Temporal variation of clear-water scour at compound abutments. Ain Shams Eng. J. 7(4), 1045-1052. https://doi.org/10.1016/j.asej.2015.07.005.
    [18]
    Guan, D.W., Liu, J., Chiew, Y.M., Hong, J.H., Cheng, L., 2023. A comparison between artificial neural network algorithms and empirical equations applied to submerged weir scour evolution prediction. Int. J. Sediment Res. 38(1), 105-114. https://doi.org/10.1016/j.ijsrc.2022.07.001.
    [19]
    Guan, D.W., Xie, Y.X., Chiew, Y.M., Ding, F., Ferradosa, T.F., Hong, J., 2024. Estimation of local scour around monopile foundations for offshore structures using machine learning models. Ocean Eng. 296, 116951. https://doi.org/10.1016/j.oceaneng.2024.116951.
    [20]
    Jayaraman, R., 1995. Hydraulic Modelling, First Edition. Indian Institute of Technology, Madras, Chennai.
    [21]
    Jones, J.S., Kilgore, R.T., Mistichelli, M.P., 1992. Effects of footing location on bridge pier scour. J. Hydraul. Eng. 118(2), 280-290. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(280).
    [22]
    Khosravinia, P., Malekpour, A., Hosseinzadehdalir, A., Farsadizadeh, D., 2018. Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Sci. Eng. 11(1), 53-60. https://doi.org/10.1016/j.wse.2018.03.001.
    [23]
    Kothyari, U.C., Hager, W.H., Oliveto, G., 2007. Generalized approach for clear-water scour at bridge foundation elements. J. Hydraul. Eng. 133(11), 1229-1240. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1229).
    [24]
    Kothyari, U.C., Kumar, A., 2012. Temporal variation of scour around circular compound piers. J. Hydraul. Eng. 138(11), 945-957. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000593.
    [25]
    Kumar, A., 2007. Scour around Circular Compound Bridge Piers. Ph.D. Dissertation. Indian Institute of Technology, Roorkee.
    [26]
    Kumar, A., Kothyari, U.C., 2012. Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J. Hydraul. Eng. 138(5), 420-429. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000527.
    [27]
    Kumar, A., Kothyari, U.C., Raju, K.G.R., 2012. Flow structure and scour around circular compound bridge piers - A review. J. Hydro-environ. Res. 6(4), 251-265. https://doi.org/10.1016/j.jher.2012.05.006.
    [28]
    Laursen, E.M., Toch, A., 1953. A Generalized Model Study of Scour around Bridge Piers and Abutments (No. HR-24). State University of Iowa, Ames.
    [29]
    Lee, G.C., Mohan, S.B., Huang, C., Fard, B.N., 2013. A Study of US Bridge Failures (1980-2012). MCEER, Buffalo.
    [30]
    Liang, D.F., Jia, H., Xiao, Y., Yuan, S.Y., 2022. Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour. Water Sci. Eng. 15(1), 47-56. https://doi.org/10.1016/j.wse.2021.12.002.
    [31]
    Lu, J.Y., Hong, J.H., Su, C.C., Wang, C.Y., Lai, J.S., 2008. Field measurements and simulation of bridge scour depth variations during floods. J. Hydraul. Eng. 134(6), 810-821. https://doi.org/10.1061/(ASCE)0733-9429(2008) 134:6(810).
    [32]
    Lu, J.Y., Shi, Z.Z., Hong, J.H., Lee, J.J., Raikar, R.V., 2011. Temporal variation of scour depth at nonuniform cylindrical piers. J. Hydraul. Eng. 137 (1), 45-56. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000272.
    [33]
    Melville, B.W., Raudkivi, A.J., 1996. Effects of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4), 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203).
    [34]
    Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publication, Colorado.
    [35]
    Najafzadeh, M., Tafarojnoruz, A., Lim, S.Y., 2017. Prediction of local scour depth downstream of sluice gates using data-driven models. ISH J. Hydraul. Eng. 23(2), 195-202. https://doi.org/10.1080/09715010.2017.1286614.
    [36]
    Najafzadeh, M., Rezaie-Balf, M., Tafarojnoruz, A., 2018. Prediction of riprap stone size under overtopping flow using data-driven models. Int. J. River Basin Manag. 16(4), 505-512. https://doi.org/10.1080/ 15715124.2018.1437738.
    [37]
    Neill, C.R., 1967. Mean-velocity criterion for scour of coarse uniform bedmaterial. In: Proceedings of the 12th IAHR Congress, Volume 3. IAHR, Delft, pp. 46-54.
    [38]
    Nimbalkar, P., Rathod, P., Manekar, V., Bhalerao, A., 2022. Scour model for circular compound bridge pier. Water Supply 22(5), 5111-5125. https://doi.org/10.2166/ws.2022.125.
    [39]
    Oliveto, G., Marino, M.C., 2017. Temporal scour evolution at non-uniform bridge piers. Water Manag. 170(5), 254-261. https://doi.org/10.1680/jwama.16.00005.
    [40]
    Pal, M., Singh, N.K., Tiwari, N.K., 2012. M5 model tree for pier scour prediction using field dataset. KSCE J. Civ. Eng. 16, 1079-1084. https://doi.org/10.1007/s12205-012-1472-1.
    [41]
    Pandey, M., Valyrakis, M., Qi, M., Sharma, A., Lodhi, A.S., 2021. Experimental assessment and prediction of temporal scour depth around a spur dike. Int. J. Sediment Res. 36(1), 17-28. https://doi.org/10.1016/j.ijsrc.2020.03.015.
    [42]
    Parola, A.C., Mahavadi, S.K., Brown, B.M., El Khoury, A., 1996. Effects of rectangular foundation geometry on local pier scour. J. Hydraul. Eng. 122 (1), 35-40. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(35).
    [43]
    Quinlan, J.R., 1992. Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. World Scientific, Singapore, pp. 343-348.
    [44]
    Richardson, E.V., Davis, S.R., 2001. Evaluating Scour at Bridges (No. FHWA-NHI-01-001). Federal Highway Administration, Washington DC.
    [45]
    Rosenblatt, F., 1957. The Perceptron, A Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical Laboratory, Buffalo.
    [46]
    Samadi, M., Afshar, M.H., Jabbari, E., Sarkardeh, H., 2021. Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches. Mar. Georesour. Geotechnol. 39(5), 577-588. https://doi.org/10.1080/1064119X.2020.1731025.
    [47]
    Shen, H.W., Schneider, V.R., Karaki, S., 1969. Local scour around bridge piers. J. Hydraul. Div. 95(6), 1919-1940. https://doi.org/10.1061/JYCEAJ.0002197.
    [48]
    Tafarojnoruz, A., Gaudio, R., Calomino, F., 2012. Bridge pier scour mitigation under steady and unsteady flow conditions. Acta Geophys. 60, 1076-1097. https://doi.org/10.2478/s11600-012-0040-x.
    [49]
    Tang, Z.H., Melville, B., Singhal, N., Shamseldin, A., Zheng, J.H., Guan, D. W., Cheng, L., 2022. Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Sci. Eng. 15(1), 15-28. https://doi.org/10.1016/j.wse.2021.12.010.
    [50]
    Wang, Y., Witten, I.H., 1996. Induction of Model Trees for Predicting Continuous Classes. Working Paper 96/23. University of Waikato, Hamilton.
    [51]
    Witten, I.H., Frank, E., 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco Calif.
    [52]
    Yang, Y., Melville, B.W., Macky, G.H., Shamseldin, A.Y., 2019. Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water 11(8), 1530. https://doi.org/10.3390/w11081530.
    [53]
    Yanmaz, A.M., Altinbilek, H.D., 1991. Study of time-dependent local scour around bridge piers. J. Hydraul. Eng. 117(10), 1247-1268. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1247).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return