Citation: | Siva Krishna Reddy, Venu Chandra. 2025: Prediction models for scour depth around circular compound bridge piers. Water Science and Engineering, 18(3): 378-390. doi: 10.1016/j.wse.2025.07.004 |
[1] |
Alipour, A., Yarahmadi, J., Mahdavi, M., 2014. Comparative study of M5 model tree and artificial neural network in estimating reference evapo-transpiration using MODIS products. J. Climatol. 2014, 839205. https://doi.org/10.1155/2014/839205.
|
[2] |
Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., Clopper, P.E., 2012. Evaluating Scour at Bridges (No. FHWA-HIF-12-003). National Highway Institute, Washington DC.
|
[3] |
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5(2), 115-123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).
|
[4] |
Ataie-Ashtiani, B., Baratian-Ghorghi, Z., Beheshti, A.A., 2010. Experimental investigation of clear-water local scour of compound piers. J. Hydraul. Eng. 136(6), 343-351. https://doi.org/10.1061/(ASCE)0733-9429(2010)136:6(343).
|
[5] |
Bateni, S.M., Borghei, S.M., Jeng, D.S., 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng. Appl. Artif. Intell. 20(3), 401-414. https://doi.org/10.1016/j.engappai.2006.06.012.
|
[6] |
Bhattacharya, A., Abraham, A., Vasant, P., Grosan, C., 2007. Evolutionary artificial neural network for selecting flexible manufacturing systems under disparate level-of-satisfaction of decision maker. Int. J. Innovat. Comput. IInf. Control 3(1), 131-140.
|
[7] |
Chang, W.Y., Constantinescu, G., Lien, H.C., Tsai, W.F., Lai, J.S., Loh, C.H., 2013. Flow structure around bridge piers of varying geometrical complexity. J. Hydraul. Eng. 139(8), 812-826. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000742.
|
[8] |
Chiew, Y.M., 1984. Local Scour at Bridge Piers. Ph.D. Dissertation. University of Auckland, Auckland.
|
[9] |
Coleman, S.E., 2005. Clearwater local scour at complex piers. J. Hydraul. Eng. 131(4), 330-334. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:4(330).
|
[10] |
Dey, S., 2014. Fluvial Hydrodynamics. Springer, Berlin. https://doi.org/10.1007/978-3-642-19062-9.
|
[11] |
Etemad-Shahidi, A., Ghaemi, N., 2011. Model tree approach for prediction of pile groups scour due to waves. Ocean Eng. 38(13), 1522-1527. https://doi.org/10.1016/j.oceaneng.2011.07.012.
|
[12] |
Etemad-Shahidi, A., Bonakdar, L., Jeng, D.S., 2015. Estimation of scour depth around circular piers: Applications of model tree. J. Hydroinform. 17(2), 226-238. https://doi.org/10.2166/hydro.2014.151.
|
[13] |
Ettema, R., 1980. Scour at Bridge Piers. Ph.D. Dissertation. University of Auckland, Auckland.
|
[14] |
Ettema, R., Melville, B.W., Barkdoll, B., 1998. Scale effect in pier-scour experiments. J. Hydraul. Eng. 124(6), 639-642. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(639).
|
[15] |
Fakhimjoo, M.S., Ardeshir, A., Behzadian, K., Karami, H., 2023. Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity. Water Sci. Eng. 16(1), 94-105. https://doi.org/10.1016/j.wse.2022.12.001.
|
[16] |
Ferraro, D., Tafarojnoruz, A., Gaudio, R., Cardoso, A.H., 2013. Effects of pile cap thickness on the maximum scour depth at a complex pier. J. Hydraul. Eng. 139 (5), 482-491. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000704.
|
[17] |
Ghani, A.A., Mohammadpour, R., 2016. Temporal variation of clear-water scour at compound abutments. Ain Shams Eng. J. 7(4), 1045-1052. https://doi.org/10.1016/j.asej.2015.07.005.
|
[18] |
Guan, D.W., Liu, J., Chiew, Y.M., Hong, J.H., Cheng, L., 2023. A comparison between artificial neural network algorithms and empirical equations applied to submerged weir scour evolution prediction. Int. J. Sediment Res. 38(1), 105-114. https://doi.org/10.1016/j.ijsrc.2022.07.001.
|
[19] |
Guan, D.W., Xie, Y.X., Chiew, Y.M., Ding, F., Ferradosa, T.F., Hong, J., 2024. Estimation of local scour around monopile foundations for offshore structures using machine learning models. Ocean Eng. 296, 116951. https://doi.org/10.1016/j.oceaneng.2024.116951.
|
[20] |
Jayaraman, R., 1995. Hydraulic Modelling, First Edition. Indian Institute of Technology, Madras, Chennai.
|
[21] |
Jones, J.S., Kilgore, R.T., Mistichelli, M.P., 1992. Effects of footing location on bridge pier scour. J. Hydraul. Eng. 118(2), 280-290. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(280).
|
[22] |
Khosravinia, P., Malekpour, A., Hosseinzadehdalir, A., Farsadizadeh, D., 2018. Effect of trapezoidal collars as a scour countermeasure around wing-wall abutments. Water Sci. Eng. 11(1), 53-60. https://doi.org/10.1016/j.wse.2018.03.001.
|
[23] |
Kothyari, U.C., Hager, W.H., Oliveto, G., 2007. Generalized approach for clear-water scour at bridge foundation elements. J. Hydraul. Eng. 133(11), 1229-1240. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1229).
|
[24] |
Kothyari, U.C., Kumar, A., 2012. Temporal variation of scour around circular compound piers. J. Hydraul. Eng. 138(11), 945-957. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000593.
|
[25] |
Kumar, A., 2007. Scour around Circular Compound Bridge Piers. Ph.D. Dissertation. Indian Institute of Technology, Roorkee.
|
[26] |
Kumar, A., Kothyari, U.C., 2012. Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J. Hydraul. Eng. 138(5), 420-429. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000527.
|
[27] |
Kumar, A., Kothyari, U.C., Raju, K.G.R., 2012. Flow structure and scour around circular compound bridge piers - A review. J. Hydro-environ. Res. 6(4), 251-265. https://doi.org/10.1016/j.jher.2012.05.006.
|
[28] |
Laursen, E.M., Toch, A., 1953. A Generalized Model Study of Scour around Bridge Piers and Abutments (No. HR-24). State University of Iowa, Ames.
|
[29] |
Lee, G.C., Mohan, S.B., Huang, C., Fard, B.N., 2013. A Study of US Bridge Failures (1980-2012). MCEER, Buffalo.
|
[30] |
Liang, D.F., Jia, H., Xiao, Y., Yuan, S.Y., 2022. Experimental investigation of turbulent flows around high-rise structure foundations and implications on scour. Water Sci. Eng. 15(1), 47-56. https://doi.org/10.1016/j.wse.2021.12.002.
|
[31] |
Lu, J.Y., Hong, J.H., Su, C.C., Wang, C.Y., Lai, J.S., 2008. Field measurements and simulation of bridge scour depth variations during floods. J. Hydraul. Eng. 134(6), 810-821. https://doi.org/10.1061/(ASCE)0733-9429(2008) 134:6(810).
|
[32] |
Lu, J.Y., Shi, Z.Z., Hong, J.H., Lee, J.J., Raikar, R.V., 2011. Temporal variation of scour depth at nonuniform cylindrical piers. J. Hydraul. Eng. 137 (1), 45-56. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000272.
|
[33] |
Melville, B.W., Raudkivi, A.J., 1996. Effects of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4), 203-209. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(203).
|
[34] |
Melville, B.W., Coleman, S.E., 2000. Bridge Scour. Water Resources Publication, Colorado.
|
[35] |
Najafzadeh, M., Tafarojnoruz, A., Lim, S.Y., 2017. Prediction of local scour depth downstream of sluice gates using data-driven models. ISH J. Hydraul. Eng. 23(2), 195-202. https://doi.org/10.1080/09715010.2017.1286614.
|
[36] |
Najafzadeh, M., Rezaie-Balf, M., Tafarojnoruz, A., 2018. Prediction of riprap stone size under overtopping flow using data-driven models. Int. J. River Basin Manag. 16(4), 505-512. https://doi.org/10.1080/ 15715124.2018.1437738.
|
[37] |
Neill, C.R., 1967. Mean-velocity criterion for scour of coarse uniform bedmaterial. In: Proceedings of the 12th IAHR Congress, Volume 3. IAHR, Delft, pp. 46-54.
|
[38] |
Nimbalkar, P., Rathod, P., Manekar, V., Bhalerao, A., 2022. Scour model for circular compound bridge pier. Water Supply 22(5), 5111-5125. https://doi.org/10.2166/ws.2022.125.
|
[39] |
Oliveto, G., Marino, M.C., 2017. Temporal scour evolution at non-uniform bridge piers. Water Manag. 170(5), 254-261. https://doi.org/10.1680/jwama.16.00005.
|
[40] |
Pal, M., Singh, N.K., Tiwari, N.K., 2012. M5 model tree for pier scour prediction using field dataset. KSCE J. Civ. Eng. 16, 1079-1084. https://doi.org/10.1007/s12205-012-1472-1.
|
[41] |
Pandey, M., Valyrakis, M., Qi, M., Sharma, A., Lodhi, A.S., 2021. Experimental assessment and prediction of temporal scour depth around a spur dike. Int. J. Sediment Res. 36(1), 17-28. https://doi.org/10.1016/j.ijsrc.2020.03.015.
|
[42] |
Parola, A.C., Mahavadi, S.K., Brown, B.M., El Khoury, A., 1996. Effects of rectangular foundation geometry on local pier scour. J. Hydraul. Eng. 122 (1), 35-40. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:1(35).
|
[43] |
Quinlan, J.R., 1992. Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. World Scientific, Singapore, pp. 343-348.
|
[44] |
Richardson, E.V., Davis, S.R., 2001. Evaluating Scour at Bridges (No. FHWA-NHI-01-001). Federal Highway Administration, Washington DC.
|
[45] |
Rosenblatt, F., 1957. The Perceptron, A Perceiving and Recognizing Automaton Project Para. Cornell Aeronautical Laboratory, Buffalo.
|
[46] |
Samadi, M., Afshar, M.H., Jabbari, E., Sarkardeh, H., 2021. Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches. Mar. Georesour. Geotechnol. 39(5), 577-588. https://doi.org/10.1080/1064119X.2020.1731025.
|
[47] |
Shen, H.W., Schneider, V.R., Karaki, S., 1969. Local scour around bridge piers. J. Hydraul. Div. 95(6), 1919-1940. https://doi.org/10.1061/JYCEAJ.0002197.
|
[48] |
Tafarojnoruz, A., Gaudio, R., Calomino, F., 2012. Bridge pier scour mitigation under steady and unsteady flow conditions. Acta Geophys. 60, 1076-1097. https://doi.org/10.2478/s11600-012-0040-x.
|
[49] |
Tang, Z.H., Melville, B., Singhal, N., Shamseldin, A., Zheng, J.H., Guan, D. W., Cheng, L., 2022. Countermeasures for local scour at offshore wind turbine monopile foundations: A review. Water Sci. Eng. 15(1), 15-28. https://doi.org/10.1016/j.wse.2021.12.010.
|
[50] |
Wang, Y., Witten, I.H., 1996. Induction of Model Trees for Predicting Continuous Classes. Working Paper 96/23. University of Waikato, Hamilton.
|
[51] |
Witten, I.H., Frank, E., 2000. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco Calif.
|
[52] |
Yang, Y., Melville, B.W., Macky, G.H., Shamseldin, A.Y., 2019. Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water 11(8), 1530. https://doi.org/10.3390/w11081530.
|
[53] |
Yanmaz, A.M., Altinbilek, H.D., 1991. Study of time-dependent local scour around bridge piers. J. Hydraul. Eng. 117(10), 1247-1268. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1247).
|