| Citation: | Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran. 2025: Enhanced degradation of dyes in secondary textile wastewater: Continuous-flow photoreactors using TiO2/chitosan/glycerol under UVA irradiation. Water Science and Engineering, 18(4): 496-505. doi: 10.1016/j.wse.2025.08.001 |
| [1] |
Abdullah, A.M., Al-Thani, N.J., Tawbi, K., Al-Kandari, H., 2016. Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation. Arabian Journal of Chemistry 9(2), 229-237. https://doi.org/10.1016/j.arabjc.2015.04.027.
|
| [2] |
Ahsan, A., Jamil, F., Rashad, M.A., Hussain, M., Inayat, A., Akhter, P., Al-Muhtaseb, A., Lin, K.-Y.A., Park, Y., 2023. Wastewater from the textile industry: Review of the technologies for wastewater treatment and reuse. Korean Journal of Chemical Engineering 40, 2060-2081. https://doi.org/10.1007/s11814-023-1475-2.
|
| [3] |
Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H., 2019. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering 7(5), 103248. https://doi.org/10.1016/j.jece.2019.103248.
|
| [4] |
Al-Zawahreh, K., Barral, M.T., Al-Degs, Y., Paradelo, R., 2022. Competitive removal of textile dyes from solution by pine bark-compost in batch and fixed bed column experiments. Environmental Technology & Innovation 27, 102421. https://doi.org/10.1016/j.eti.2022.102421.
|
| [5] |
Ali, I., Kim, J.-O., 2018 Continuous-flow photocatalytic degradation of organics using modified TiO2 nanocomposites. Catalysts 8(2), 43. https://doi.org/10.3390/catal8020043.
|
| [6] |
American Public Health Association, 2017. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.
|
| [7] |
Bahrudin, N.N., Nawi, M.A., 2019. Mechanistic of photocatalytic decolorization and mineralization of methyl orange dye by immobilized TiO2/chitosan-montmorillonite. Journal of Water Process Engineering 31, 100843. https://doi.org/10.1016/j.jwpe.2019.100843.
|
| [8] |
Bapat, S., Jaspal, D., Malviya, A., 2021. Integrated textile effluent treatment method. Water Environment Research 93(7), 1060-1076. https://doi.org/10.1002/wer.1494.
|
| [9] |
Basiak, E., Lenart, A., Debeaufort, F., 2018. How glycerol and water contents affect the structural and functional properties of starch-based edible films. Polymers 10(4), 412. https://doi.org/10.3390/polym10040412.
|
| [10] |
Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., Huo, S., Cheng, P., Peng, P., Zhang, R., Wang, L., et al., 2020. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production 268, 121725. https://doi.org/10.1016/j.jclepro.2020.121725.
|
| [11] |
Elzahar, M.M.H., Bassyouni, M., 2023. Removal of direct dyes from wastewater using chitosan and polyacrylamide blends. Scientific Reports 13(1), 15750. https://doi.org/10.1038/s41598-023-42960-y.
|
| [12] |
Farzana, M.H., Meenakshi, S., 2014. Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique. Industrial & Engineering Chemistry Research 53(1), 55-63. https://doi.org/10.1021/ie402347g.
|
| [13] |
Foo, K.Y., Hameed, B.H., 2010. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013.
|
| [14] |
George, Z.K., Margaritis, K., Nikolaos, K.L., Dimitrios, N.B., 2013. Eco-friendly Textile Dyeing and Finishing. IntechOpen, Rijeka. https://doi.org/10.5772/52817.
|
| [15] |
Hayat, H., Mahmood, Q., Pervez, A., Bhatti, Z.A., Baig, S.A., 2015. Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Separation and Purification Technology 154, 149-153. https://doi.org/10.1016/j.seppur.2015.09.025.
|
| [16] |
Heredia Deba, S.A., Wols, B.A., Yntema, D.R., Lammertink, R.G.H., 2023. Photocatalytic ceramic membrane: Effect of the illumination intensity and distribution. Journal of Photochemistry and Photobiology A: Chemistry 437, 114469. https://doi.org/10.1016/j.jphotochem.2022.114469.
|
| [17] |
Hoang, N.T.T., Doan, Q.K.T., Le-Thanh, A., Tran, A.T.-K., Huy, N.N., 2021a. Application of an enhanced pilot-scale photocatalytic treatment system in ground and river water treatment for drinking purpose using sunlight. Nanotechnology for Environmental Engineering 6(3), 56. https://doi.org/10.1007/s41204-021-00155-8.
|
| [18] |
Hoang, N.T.T., Tran, A.T.-K., Hoang, M.-H., Nguyen, T.T.H., Bui, X.-T., 2021b. Synergistic effect of TiO2/chitosan/glycerol photocatalyst on color and COD removal from a dyeing and textile secondary effluent. Environmental Technology & Innovation 21, 101255. https://doi.org/10.1016/j.eti.2020.101255.
|
| [19] |
Hoang, N.T.T., Nguyen, D.D., 2023 Improving the degradation kinetics of industrial dyes with chitosan/TiO2/glycerol films for the sustainable recovery of chitosan from waste streams. Sustainability 15(8), 6979. https://doi.org/10.3390/su15086979.
|
| [20] |
Ispirli Dogac, Y., Deveci, I., Teke, M., Mercimek, B., 2014. TiO2 beads and TiO2-chitosan beads for urease immobilization. Materials Science and Engineering: C 42, 429-435. https://doi.org/10.1016/j.msec.2014.05.058.
|
| [21] |
Kane, A., Assadi, A., Jery, A., Badawi, A., Kenfoud, H., Baaloudj, O., Assadi, A., 2022. Advanced photocatalytic treatment of wastewater using immobilized titanium dioxide as a photocatalyst in a pilot-scale reactor: Process intensification. Materials 15(13), 4547. https://doi.org/10.3390/ma15134547.
|
| [22] |
Kato S., Sakai, Y., Sato, Y., Kansha, Y., 2023. Photocatalytic degradation of phenol with ultrasonic mist and sunlight. Chemical Engineering Transactions 103, 187-192. https://doi.org/10.3303/CET23103032.
|
| [23] |
Khouni, I., Marrot, B., Moulin, P., Ben Amar, R., 2011. Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 268(1-3), 27-37. https://doi.org/10.1016/j.desal.2010.09.046.
|
| [24] |
Lellis, B., Favaro-Polonio, C.Z., Pamphile, J.A., Polonio, J.C., 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2), 275-290. https://doi.org/10.1016/j.biori.2019.09.001.
|
| [25] |
Malato, S., Fernandez-Ibanez, P., Maldonado, M.I., Blanco, J., Gernjak, W., 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today 147(1), 1-59. https://doi.org/10.1016/j.cattod.2009.06.018.
|
| [26] |
Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters 29(1-2), 211-214.
|
| [27] |
Mei, J., Gao, X., Zou, J., Pang, F., 2023. Research on photocatalytic wastewater treatment reactors: Design, optimization, and evaluation criteria. Catalysts 13(6), 974. https://doi.org/10.3390/catal13060974.
|
| [28] |
Mendoza Hernandez, J.A.-O., Perez Osorio, G.A.-O., Gutierrez Arias, J.A.-O., Castaneda Camacho, J.A.-O., 2022. Degradation of dye containing in textile wastewater by sequential process: Photocatalytic and biological treatment. Turkish Journal of Chemistry 46(6), 2046-2056. https://doi.org/10.55730/1300-0527.3501.
|
| [29] |
Mensah, K., Shokry, H., Elkady, M., Hawash, H.B., Samy, M., 2024. Enhanced photocatalytic degradation of dyes using a novel waste toner-based TiO2/Fe2O3@nanographite nanohybrid: A sustainable approach. Water Science and Engineering 17(3), 226-235. https://doi.org/10.1016/j.wse.2024.01.005.
|
| [30] |
Mohammadzadeh, S., Olya, M.E., Arabi, A.M., Shariati, A., Khosravi Nikou, M.R., 2015. Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. Journal of Environmental Sciences 35, 194-207. https://doi.org/10.1016/j.jes.2015.03.030.
|
| [31] |
Mora, B.P., Bertoni, F.A., Mangiameli, M.F., Gonzalez, J.C., Bellu, S.E., 2020. Batch and fixed-bed column studies of selenite removal from contaminated water by orange peel-based sorbent. Water Science and Engineering 13(4), 307-316. https://doi.org/10.1016/j.wse.2020.12.003.
|
| [32] |
Nitsae, M., Madjid, A., Hakim, L., Sabarudin, A., 2016. Preparation of chitosan beads using tripolyphosphate and ethylene glycol diglycidyl ether as crosslinker for Cr(VI) adsorption. Chemistry & Chemical Technology 10(1), 105-113. https://doi.org/10.23939/chcht10.01.105.
|
| [33] |
Ochiai, T., Fujishima, A., 2012. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(4), 247-262. https://doi.org/10.1016/j.jphotochemrev.2012.07.001.
|
| [34] |
Oladoye, P.O., Ajiboye, T.O., Wanyonyi, W.C., Omotola, E.O., Oladipo, M.E., 2023. Insights into remediation technology for malachite green wastewater treatment. Water Science and Engineering 16(3), 261-270. https://doi.org/10.1016/j.wse.2023.03.002.
|
| [35] |
Pal, P., Pal, A., 2019. Dye removal using waste beads: Efficient utilization of surface-modified chitosan beads generated after lead adsorption process. Journal of Water Process Engineering 31, 100882. https://doi.org/10.1016/j.jwpe.2019.100882.
|
| [36] |
Rasoulifard, M., Dorraji, M., Mozafari, V., 2016. Visible light photocatalytic activity of chitosan/poly(vinyl alcohol)/TiO2 nanocomposite for dye removal: Taguchi-based optimization. Environmental Progress & Sustainable Energy 36(1), 66-72. https://doi.org/10.1002/ep.12438.
|
| [37] |
Safo, K., Rubangakene, N.O., Noby, H., El-Shazly, A.H., 2025. Photocatalytic purification of dye-containing wastewater using a novel embedded hybrid TiO2-slag catalyst heterojunction nanocomposite coupled with statistical models: A sustainable and techno-economic approach. Water Science and Engineering 18(2), 151-164. https://doi.org/10.1016/j.wse.2025.02.003.
|
| [38] |
Sonu, K., Sogani, M., Syed, Z., Dongre, A., Sharma, G., 2020. Enhanced decolorization and treatment of textile dye wastewater through adsorption on acid modified corncob derived biochar. ChemistrySelect 5(39), 12287-12297. https://doi.org/10.1002/slct.202003156.
|
| [39] |
Verma, A.K., Dash, R.R., Bhunia, P., 2012. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012.
|
| [40] |
Wiacek, A.E., Gozdecka, A., Jurak, M., 2018. Physicochemical characteristics of chitosan-TiO2 biomaterial. 1. Stability and swelling properties. Industrial & Engineering Chemistry Research 57(6), 1859-1870. https://doi.org/10.1021/acs.iecr.7b04257.
|
| [41] |
Zhang, Y., Shaad, K., Vollmer, D., Ma, C., 2021. Treatment of textile wastewater using advanced oxidation processes - A critical review. Water 13(24), 3515. https://doi.org/10.3390/w13243515.
|