Volume 18 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
Phuong Thu Le, Thu Phuong Nguyen, Hong Nam Nguyen, Thu Huong Tran, Thi Hai Do, Phan Thi Thuy, Thi Mai Thanh Dinh, Toshiki Tsubota, Vinh Duc Nguyen, Trung Dung Nguyen. 2025: Z-scheme Bi2MoO6/g-C3N4 heterojunction for efficient antibiotic degradation via persulfate activation under visible light. Water Science and Engineering, 18(4): 515-526. doi: 10.1016/j.wse.2025.08.003
Citation: Phuong Thu Le, Thu Phuong Nguyen, Hong Nam Nguyen, Thu Huong Tran, Thi Hai Do, Phan Thi Thuy, Thi Mai Thanh Dinh, Toshiki Tsubota, Vinh Duc Nguyen, Trung Dung Nguyen. 2025: Z-scheme Bi2MoO6/g-C3N4 heterojunction for efficient antibiotic degradation via persulfate activation under visible light. Water Science and Engineering, 18(4): 515-526. doi: 10.1016/j.wse.2025.08.003

Z-scheme Bi2MoO6/g-C3N4 heterojunction for efficient antibiotic degradation via persulfate activation under visible light

doi: 10.1016/j.wse.2025.08.003
Funds:

This work was supported by the Vietnam Academy of Science and Technology (Grant No. VAST07.03/23-24).

  • Received Date: 2024-12-19
  • Accepted Date: 2025-08-04
  • Available Online: 2025-12-03
  • The growing prevalence of emerging pollutants has spurred increasing research interest in developing novel materials for treatment. In this study, a Z-scheme Bi2MoO6/g-C3N4 (BMCN) photocatalyst was facilely synthesized via a solvothermal technique and employed to activate peroxydisulfate (PDS) under visible light irradiation. The system of the BMCN photocatalyst with 20% g-C3N4 (BMCN-20) combined with PDS under visible light irradiation (BMCN-20/PDS-Vis) achieved 89.04% ciprofloxacin (CFX) degradation within 90 min. PDS acted as an electron scavenger, suppressing recombination of photo-generated electron-hole pairs and enhancing CFX degradation via additional SO·-4 formation. The CFX degradation rate constant of the BMCN-20/PDS/Vis system was 1.33 and 2.31 times greater than those of Bi2MoO6/PDS and g-C3N4/PDS, respectively, attributed to efficient electron transfer with the Z-scheme BMCN-20. Scavenging experiments identified 1O2, O·-2, and h+ as the primary reactive species driving CFX degradation. Mass spectrometry and density functional theory analyses confirmed the degradation pathways and revealed degradation intermediates. These findings demonstrate the potential of the BMCN-20/PDS/Vis system as an effective and environmentally friendly approach for antibiotic removal from wastewater.

     

  • loading
  • [1]
    Chankhanittha, T., Somaudon, V., Watcharakitti, J., Piyavarakorn, V., Nanan, S., 2020. Performance of solvothermally grown Bi2MoO6 photocatalyst toward degradation of organic azo dyes and fluoroquinolone antibiotics. Materials Letters 258, 126764. https://doi.org/10.1016/j.matlet.2019.126764.
    [2]
    Chen, Y., Zhao, C., Ma, S., Xing, P., Hu, X., Wu, Y., He, Y., 2019. Fabrication of a Z-scheme AgBr/Bi4O5Br2 nanocomposite and its high efficiency in photocatalytic N2 fixation and dye degradation. Inorg. Chem. Front. 6, 3083-3092. https://doi.org/10.1039/C9QI00782B.
    [3]
    Dang, V.D., Adorna, J., Annadurai, T., Bui, T.A.N., Tran, H.L., Lin, L.-Y., Doong, R.-A., 2021. Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin. Chemical Engineering Journal 422, 130103. https://doi.org/10.1016/j.cej.2021.130103.
    [4]
    Dharman, R.K., Oh, T.H., 2023. Fabrication of g-C3N4@N-doped Bi2MoO6 heterostructure for enhanced visible-light-driven photocatalytic degradation of tetracycline pollutant. Chemosphere 338, 139513. https://doi.org/10.1016/j.chemosphere.2023.139513.
    [5]
    Dionisio, R., Daniel, D., Alkimin, G.D.D., Nunes, B., 2020. Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: Short- and long-term effects on Daphnia magna. Environmental Toxicology and Pharmacology 74, 103295. https://doi.org/10.1016/j.etap.2019.103295.
    [6]
    Dung, N.T., Khiem, T.C., Thao, N.P., Phu, N.A., Son, N.T., Dat, T.Q., Phuong, N.T., Trang, T.T., Nhi, B.D., Thuy, N.T., et al., 2024. Enhancing catalytic activity of CuCoFe-layered double oxide towards peroxymonosulfate activation by coupling with biochar derived from durian peel for antibiotic degradation: The role of C=O in biochar and underlying mechanism of built-in electric field. Chemosphere 361, 142452. https://doi.org/10.1016/j.chemosphere.2024.142452.
    [7]
    Frisch, M.J., Trucks, G., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., et al., 2009. Gaussian 09 Revision A.1. Gaussian Inc., Wallingford.
    [8]
    Gao, C., Li, D., Wen, Q., Song, F., Zhou, J., 2024. Synthesis of dual p-n heterojunction of NiWO4/CdS/ZIF-67 photocatalyst as a highly efficient photo-assisted Fenton-like catalyst for removal of doxycycline hydrochloride. Applied Surface Science 645, 158872. https://doi.org/10.1016/j.apsusc.2023.158872.
    [9]
    Guo, L., Huang, H., Mei, L., Li, M., Zhang, Y., 2021. Bismuth-based Z-scheme photocatalytic systems for solar energy conversion. Mater. Chem. Front. 5(6), 2484-2505. https://doi.org/10.1039/D0QM00895H.
    [10]
    Hasija, V., Nguyen, V.-H., Kumar, A., Raizada, P., Krishnan, V., Khan, A.A.P., Singh, P., Lichtfouse, E., Wang, C., Thi Huong, P., 2021. Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials 413, 125324. https://doi.org/10.1016/j.jhazmat.2021.125324.
    [11]
    Jia, Y., Duan, L., Li, H., Zhang, C., Gao, Q., Zhang, H., Li, S., Li, M., 2025. Visible light activation of persulfate by α-Fe2O3/PDINH photocatalyst for sulfamethoxazole degradation. Separation and Purification Technology 354, 129287. https://doi.org/10.1016/j.seppur.2024.129287.
    [12]
    Khan, P., Saha, R., Halder, G., 2024. Towards sorptive eradication of pharmaceutical micro-pollutant ciprofloxacin from aquatic environment: A comprehensive review. Science of The Total Environment 919, 170723. https://doi.org/10.1016/j.scitotenv.2024.170723.
    [13]
    Li, H., Liu, J., Hou, W., Du, N., Zhang, R., Tao, X., 2014. Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental 160-161, 89-97. https://doi.org/10.1016/j.apcatb.2014.05.019.
    [14]
    Li, J., Yin, Y., Liu, E., Ma, Y., Wan, J., Fan, J., Hu, X., 2017. In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. Journal of Hazardous Materials 321, 183-192. https://doi.org/10.1016/j.jhazmat.2016.09.008.
    [15]
    Li, K., Chen, M., Chen, L., Zhao, S., Xue, W., Han, Y., 2023a. Investigating the effect of Bi2MoO6/g-C3N4 ratio on photocatalytic degradation of sulfadiazine under visible light. Processes 11(4), 1059. https://doi.org/10.3390/pr11041059.
    [16]
    Li, K., Chen, M., Chen, L., Zhao, S., Xue, W., Han, Z., Han, Y., 2023b. Synthesis of g-C3N4 derived from different precursors for photodegradation of sulfamethazine under visible light. Processes 11(2), 528. https://doi.org/10.3390/pr11020528.
    [17]
    Li, Y., Zhang, H., Yao, S., Chao, C., Chen, Q., Chen, J., Fan, F., Jia, H., Dong, M., 2024a. High-efficiency removal of ciprofloxacin by persulfate activated with 3D Bi2WO6/g-C3N4/GA Z-scheme heterojunction under simulated sunlight. Journal of Water Process Engineering 63, 105490. https://doi.org/10.1016/j.jwpe.2024.105490.
    [18]
    Li, Y., Zhang, H., Zhang, D., Yao, S., Dong, S., Chen, Q., Fan, F., Jia, H., Dong, M., 2024b. Construction of Bi2WO6/g-C3N4 Z-scheme heterojunction and its enhanced photocatalytic degradation of tetracycline with persulfate under solar light. Molecules 29, 1169. https://doi.org/10.3390/molecules29051169.
    [19]
    Ling, C., Wu, S., Han, J., Dong, T., Zhu, C., Li, X., Xu, L., Zhang, Y., Zhou, M., Pan, Y., 2022. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: Performance and dominant routine of reactive species production. Water Research 220, 118676. https://doi.org/10.1016/j.watres.2022.118676.
    [20]
    Liu, J., Du, Y., Sun, W., Chang, Q., Peng, C., 2020. A granular adsorbent-supported Fe/Ni nanoparticles activating persulfate system for simultaneous adsorption and degradation of ciprofloxacin. Chinese Journal of Chemical Engineering 28(4), 1077-1084. https://doi.org/10.1016/j.cjche.2019.12.019.
    [21]
    Liu, Q., Yu, Z., Liang, D., Xiong, J., Gan, T., Hu, H., Huang, Z., Zhang, Y., 2024. Elemental imprinting-induced interfacial growth strategy to bridge g-C3N4 and Bi2MoO6 with engineering rapid electron transfer pathway for efficient visible light-driven photocatalysis. Chemical Engineering Journal 496, 154057. https://doi.org/10.1016/j.cej.2024.154057.
    [22]
    Liu, W., Zhou, J., Zhou, Y., Liu, D., 2021. Peroxymonosulfate-assisted g-C3N4@Bi2MoO6 photocatalytic system for degradation of nimesulide through phenyl ether bond cleavage under visible light irradiation. Separation and Purification Technology 264, 118288. https://doi.org/10.1016/j.seppur.2020.118288.
    [23]
    Ma, B., Zha, Y., Yu, P., Chen, G., Guo, Y., Lan, Y., Li, J., Xia, W., Zhao, B., 2023. Hydrothermal nanoarchitectonics of Z-scheme g-C3N4/Bi2WO6 heterojunction with enhanced adsorption and photocatalytic activity for fluoroquinolone antibiotics removal: Kinetics, mechanism and degradation pathway. Journal of Alloys and Compounds 952, 170061. https://doi.org/10.1016/j.jallcom.2023.170061.
    [24]
    Masoud, A., Ahmed, M.A., Kuhn, F., Bassioni, G., 2023. Nanosheet g-C3N4 enhanced by Bi2MoO6 for highly efficient photocatalysts toward photodegradation of Rhodamine-B dye. Heliyon 9(11), e22342. https://doi.org/10.1016/j.heliyon.2023.e22342.
    [25]
    Mishra, S.R., Gadore, V., Roy, S., Ahmaruzzaman, M., 2025. Bandgap-engineered In2S3 quantum dots anchored on oxygen-doped g-C3N4: Forging a dynamic n-n heterojunction for enhanced persulfate activation and degradation of metronidazole. Environmental Science: Nano 12(2), 1340-1363. https://doi.org/10.1039/D4EN00859F.
    [26]
    Nguyen, H.N., Nguyen, T.P., Le, P.T., Tran, Q.M., Do, T.H., Nguyen, T.D., Tran-Nguyen, P.L., Tsubota, T., Dinh, T.M.T., 2025. Investigation on cost-effective composites for CO2 adsorption from post-gasification residue and metal organic framework. Journal of Environmental Sciences 148, 174-187. https://doi.org/10.1016/j.jes.2023.10.022.
    [27]
    Phuong, N.T., Hai, D.T., Doneux, T., Nam, N.H., Thanh, D.T.M., 2023. Synthesis of metal organic framework based on Cu and benzene-1,3,5-tricarboxylic acid (H3BTC) by potentiodynamic method for CO2 adsorption. Vietnam Journal of Chemistry 61(2), 210-219. https://doi.org/10.1002/vjch.202200125.
    [28]
    Ren, G., Zhang, J., Li, S., Zhang, L., Shao, C., Wang, X., Bai, H., 2024. Z-scheme heterojunction composed of Fe-doped g-C3N4 and Bi2MoO6 for photo-Fenton degradation of antibiotics over a wide pH range: Activity and toxicity assessment. Environmental Research 252, 118886. https://doi.org/10.1016/j.envres.2024.118886.
    [29]
    Taghilou, S., Mehrasbi, M.R., Esrafili, A., Dehghanifard, E., Kermani, M., Kakavandi, B., Giannakis, S., 2024. Enhanced peroxymonosulfate-mediated photocatalytic pesticide degradation by a novel stable multi-metal ferrite (Mg, Cu, Fe) anchored on g-C3N4. J. Mater. Chem. A 12, 19532-19550. https://doi.org/10.1039/D4TA02722A.
    [30]
    Tian, N., Madani, Z., Giannakis, S., Isari, A.A., Arjmand, M., Hasanvandian, F., Noorisepehr, M., Kakavandi, B., 2023. Peroxymonosulfate assisted pesticide breakdown: Unveiling the potential of a novel S-scheme ZnO@CoFe2O4 photo-catalyst, anchored on activated carbon. Environmental Pollution 334, 122059. https://doi.org/10.1016/j.envpol.2023.122059.
    [31]
    Tuan, D.D., Park, Y.-K., Wen, J.-C., Bui, H.M., Duan, X., Ghanbari, F., Ghotekar, S., Chen, W.-H., Lin, K.-Y.A., 2023. Emerging investigator series: Enhancing the degradation of ciprofloxacin in water using oxone activated by urchin-like cubic and hollow-structured cobalt@N-doped carbon prepared by etching-engineering: A comparative study with mechanistic and eco-toxic assessments. Environmental Science: Water Research & Technology 9(8), 1992-2007. https://doi.org/10.1039/D3EW00009E.
    [32]
    Wan, J., Huang, J., Yu, H., Liu, L., Shi, Y., Liu, C., 2021. Fabrication of self-assembled 0D-2D Bi2MoO6-g-C3N4 photocatalytic composite membrane based on PDA intermediate coating with visible light self-cleaning performance. Journal of Colloid and Interface Science 601, 229-241. https://doi.org/10.1016/j.jcis.2021.05.038.
    [33]
    Wang, F., Guo, J., Zhu, Z., 2024. Enhanced degradation of tetracycline using ferrihydrite-decorated g-C3N4 via photocatalytic activation of peroxymonosulfate. Journal of Water Process Engineering 68, 106577. https://doi.org/10.1016/j.jwpe.2024.106577.
    [34]
    Wu, J., Xu, J., Chen, M., 2025. Interfacial oxygen vacancy engineering of double Z-scheme heterojunction Bi2MoO6/MnWO4/g-C3N4 for efficient photocatalytic degradation of iodohydrin. Separation and Purification Technology 354, 128759. https://doi.org/10.1016/j.seppur.2024.128759.
    [35]
    Yan, T., Yan, Q., Wang, X., Liu, H., Li, M., Lu, S., Xu, W., Sun, M., 2015. Facile fabrication of heterostructured g-C3N4/Bi2MoO6 microspheres with highly efficient activity under visible light irradiation. Dalton Trans. 44(4), 1601-1611. https://doi.org/10.1039/C4DT02127D.
    [36]
    Yousefi, M., Farzadkia, M., Mahvi, A.H., Kermani, M., Gholami, M., Esrafili, A., 2024. Photocatalytic degradation of ciprofloxacin using a novel carbohydrate-based nanocomposite from aqueous solutions. Chemosphere 349, 140972. https://doi.org/10.1016/j.chemosphere.2023.140972.
    [37]
    Yu, H., Zhang, J., Zhai, R., Gao, C., Zhang, Y., Tian, C., Ma, Q., 2024. Magnetic biochar-doped g-C3N4/Fe2O3 S-scheme heterojunction with enhanced photocatalytic degradation of tetracycline by addition of persulfate. Carbon 230, 119681. https://doi.org/10.1016/j.carbon.2024.119681.
    [38]
    Zhang, J., Shao, C., Zhang, A., Zhang, Y., Zhang, L., Bai, H., 2024. Nitrogen-doped carbon quantum dots modified dual-vacancy Z-scheme CuFe2O4/g-C3N4 photocatalyst synergistic with Fenton technique for photothermal degradation of antibiotics. Chemical Engineering Journal 497, 154497. https://doi.org/10.1016/j.cej.2024.154497.
    [39]
    Zhang, T., Liu, B., Li, Q., Niu, X., Xia, Z., Qi, L., Liu, G., Liu, Y., Gao, A., Wang, H., 2025. Enhanced scavenger-free photocatalysis-self-Fenton degradation performance over B-doped NVs modified g-C3N4 via promoting Fe(II)/Fe(III) cycle. Separation and Purification Technology 353, 128386. https://doi.org/10.1016/j.seppur.2024.128386.
    [40]
    Zhang, X., Chen, S., Lian, X., Dong, S., Li, H., Xu, K., 2022. Efficient activation of peroxydisulfate by g-C3N4/Bi2MoO6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes. Journal of Colloid and Interface Science 607, 684-697. https://doi.org/10.1016/j.jcis.2021.08.198.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (0) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return