| Citation: | Xin Wang, Chao Deng, Xin Yin, Jia Wei, Jia-cheng Zou. 2025: Assessing climate change impacts on streamflow in upper Han River Basin using deep learning models ensembled with Bayesian model averaging. Water Science and Engineering, 18(4): 412-421. doi: 10.1016/j.wse.2025.08.004 |
| [1] |
Adib, M.N.M., Harun, S., 2022. Metalearning approach coupled with CMIP6 multi-GCM for future monthly streamflow forecasting. Journal of Hydrologic Engineering 27(6), 05022004. https://doi.org/10.1061/(asce)he.1943-5584.0002176.
|
| [2] |
Akbarian, M., Saghafian, B., Golian, S., 2023. Monthly streamflow forecasting by machine learning methods using dynamic weather prediction model outputs over Iran. Journal of Hydrology 620, 129480. https://doi.org/10.1016/j.jhydrol.2023.129480.
|
| [3] |
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements. FAO, Rome.
|
| [4] |
Arsenault, R., Gatien, P., Renaud, B., Brissette, F., Martel, J.-L., 2015. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. Journal of Hydrology 529, 754-767. https://doi.org/10.1016/j.jhydrol.2015.09.001.
|
| [5] |
Bagcaci, S.C., Yucel, I., Duzenli, E., Yilmaz, M.T., 2021. Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research 256, 105576. https://doi.org/10.1016/j.atmosres.2021.105576.
|
| [6] |
Bai, S., Zico Kolter J., Koltun V., 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Arxiv 1803.01271. https://doi.org/10.48550/arXiv.1803.01271.
|
| [7] |
Chiang, Y.M., Hao, R.N., Xu, Y.P., Liu, L., 2022. Multi-source rainfall merging and reservoir inflow forecasting by ensemble technique and artificial intelligence. Journal of Hydrology: Regional Studies 44, 101204. https://doi.org/10.1016/j.ejrh.2022.101204.
|
| [8] |
Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Arxiv 1046.1078. https://doi.org/10.48550/arXiv.1406.1078.
|
| [9] |
Duan, Q., Ajami, N.K., Gao, X., Sorooshian, S., 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources 30(5), 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014.
|
| [10] |
Edamo, M,L, Hatiye, S.D., Minda, T.T., Ukumo, T.Y., 2023. Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia. Natural Hazards 118, 2199-2226. https://doi.org/10.1007/s11069-023-06101-y.
|
| [11] |
Gao, J., Du, J., Yang, C., Deqing, Z., Ma, P., Zhuo, G., 2022. Evaluation and correction of climate simulations for the Tibetan Plateau using the CMIP6 models. Atmosphere 13(12), 1947. https://doi.org/10.3390/atmos13121947.
|
| [12] |
Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T., 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review 133(5), 1098-1118. https://doi.org/10.1175/mwr2904.1.
|
| [13] |
Gradiyanto, F., Parmantoro, P.N., Suharyanto, 2025. Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering 18(1), 69-77. https://doi.org/10.1016/j.wse.2024.03.005.
|
| [14] |
Gray, L.C., Zhao, L., Stillwell, A.S., 2023. Impacts of climate change on global total and urban runoff. Journal of Hydrology 620, 129352. https://doi.org/10.1016/j.jhydrol.2023.129352.
|
| [15] |
Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, S., Langan, S., et al., 2018. Global assessment of water challenges under uncertainty in water scarcity projections. Nature Sustainability 1, 486-494. https://doi.org/10.1038/s41893-018-0134-9.
|
| [16] |
Guo, Y., Xu, Y.P., Xie, J., Chen, H., Si, Y., Liu, J., 2021. A weights combined model for middle and long-term streamflow forecasts and its value to hydropower maximization. Journal of Hydrology 602, 126794. https://doi.org/10.1016/j.jhydrol.2021.126794.
|
| [17] |
Han, H., Morrison, R.R., 2022. Data-driven approaches for runoff prediction using distributed data. Stochastic Environmental Research and Risk Assessment 36, 2153-2171. https://doi.org/10.1007/s00477-021-01993-3.
|
| [18] |
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Computation 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
|
| [19] |
Jozaghi, A., Shen, H., Ghazvinian, M., Seo, D.J., Zhang, Y., Welles, E., Reed, S., 2021. Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stochastic Environmental Research and Risk Assessment 35, 2355-2373. https://doi.org/10.1007/s00477-021-02048-3.
|
| [20] |
Kim, J., Porter, J., Kearns, E.J., 2023. Exposure of the US population to extreme precipitation risk has increased due to climate change. Scientific Reports 13, 21782. https://doi.org/10.1038/s41598-023-48969-7.
|
| [21] |
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., Dadson, S.J., 2021. Benchmarking data-driven rainfall-runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrology and Earth System Sciences 25(10), 5517-5534. https://doi.org/10.5194/hess-25-5517-2021.
|
| [22] |
Li, G., Liu, Z., Zhang, J., Han, H., Shu, Z., 2024. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Science of The Total Environment 906, 167718. https://doi.org/10.1016/j.scitotenv.2023.167718.
|
| [23] |
Liu, G., Tang, Z., Qin, H., Liu, S., Shen, Q., Qu, Y., Zhou, J., 2022. Short-term runoff prediction using deep learning multi-dimensional ensemble method. Journal of Hydrology 609, 127762. https://doi.org/10.1016/j.jhydrol.2022.127762.
|
| [24] |
Liu, W., Kuo, Y., Zhao, E., 2021. Influence of the South-to-North Water Transfer and the Yangtze River mitigation projects on the water quality of Han River, China. Environmental Earth Sciences 80, 246. https://doi.org/10.1007/s12665-021-09534-5.
|
| [25] |
Liu, Z., Merwade, V., 2018. Accounting for model structure, parameter and input forcing uncertainty in flood inundation modeling using Bayesian model averaging. Journal of Hydrology 565, 138-149. https://doi.org/10.1016/j.jhydrol.2018.08.009.
|
| [26] |
Lun, Y., Liu, L., Cheng, L., Li, X., Li, H., Xu, Z., 2021. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology 41(7), 3994-4018. https://doi.org/10.1002/joc.7055.
|
| [27] |
Meng, E., Huang, S., Huang, Q., Fang, W., Wu, L., Wang, L., 2019. A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. Journal of Hydrology 568, 462-478. https://doi.org/10.1016/j.jhydrol.2018.11.015.
|
| [28] |
Mohammadi, B., 2021. A review on the applications of machine learning for runoff modeling. Sustainable Water Resources Management 7, 98. https://doi.org/10.1007/s40899-021-00584-y.
|
| [29] |
Moknatian, M., Mukundan, R., 2023. Uncertainty analysis of streamflow simulations using multiple objective functions and Bayesian model averaging. Journal of Hydrology 617, 128961. https://doi.org/10.1016/j.jhydrol.2022.128961.
|
| [30] |
Neumann, A., Dong, F., Shimoda, Y., Arnillas, C.A., Javed, A., Yang, C., Zamaria, S., Mandal, S., Wellen, C., Paredes, D., 2021. A review of the current state of process-based and data-driven modelling: Guidelines for Lake Erie managers and watershed modellers. Environmental Reviews 29(4), 443-490. https://doi.org/10.1139/er-2020-0070.
|
| [31] |
Niu, W., Feng, Z., Chen, Y., Zhang, H., Cheng, C., 2020. Annual streamflow time series prediction using extreme learning machine based on gravitational search algorithm and variational mode decomposition. Journal of Hydrologic Engineering 25(5), 04020008. https://doi.org/10.1061/(asce)he.1943-5584.0001902.
|
| [32] |
Nooni, I.K., Ogou, F.K., Chaibou, A.A.S., Nakoty, F.M., Gnitou, G.T., Lu, J., 2023. Evaluating CMIP6 historical mean precipitation over Africa and the Arabian Peninsula against satellite-based observation. Atmosphere 14(3), 607. https://doi.org/10.3390/atmos14030607.
|
| [33] |
Nourani, V., Gokcekus, H., Gichamo, T., 2021. Ensemble data-driven rainfall-runoff modeling using multi-source satellite and gauge rainfall data input fusion. Earth Science Informatics 14, 1787-1808. https://doi.org/10.1007/s12145-021-00615-4.
|
| [34] |
Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M., 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review 133(5), 1155-1174. https://doi.org/10.1175/mwr2906.1.
|
| [35] |
Rahimzad, M., Moghaddam Nia, A., Zolfonoon, H., Soltani, J., Danandeh Mehr, A., Kwon, H.-H., 2021. Performance comparison of an LSTM-based deep learning model versus conventional machine learning algorithms for streamflow forecasting. Water Resources Management 35, 4167-4187. https://doi.org/10.1007/s11269-021-02937-w.
|
| [36] |
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat., 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195-204. https://doi.org/10.1038/s41586-019-0912-1.
|
| [37] |
Sang, J., Hou, B., Wang, H., Ding, X., 2023. Prediction of water resources change trend in the Three Gorges Reservoir Area under future climate change. Journal of Hydrology 617, 128881. https://doi.org/10.1016/j.jhydrol.2022.128881.
|
| [38] |
Shamseldin, A.Y., Oconnor, K.M., Liang, G.C., 1997. Methods for combining the outputs of different rainfall-runoff models. Journal of Hydrology 197(1-4), 203-229. https://doi.org/10.1016/s0022-1694(96)03259-3.
|
| [39] |
Tan, Q.F., Lei X.H., Wang, X., Wang, H., Wen, X., Ji, Y., Kang, A.Q., 2018. An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach. Journal of Hydrology 567, 767-780. https://doi.org/10.1016/j.jhydrol.2018.01.015.
|
| [40] |
Teutschbein, C., Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology 456, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
|
| [41] |
Themessl, M.J., Gobiet, A., Heinrich, G., 2012. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change 112, 449-468. https://doi.org/10.1007/s10584-011-0224-4.
|
| [42] |
Torres, F.L.R., Lima, L.M.M., Reboita, M.S., de Queiroz, A.R., Lima, J.W.M., 2024. Integrating hydrological and machine learning models for enhanced streamflow forecasting via Bayesian model averaging in a hydro-dominant power system. Water 16(4), 586. https://doi.org/10.3390/w16040586.
|
| [43] |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need. In: Guyon I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems. NeurIPS, San Diego.
|
| [44] |
Viney, N.R., Bormann, H., Breuer, L., Bronstert, A., Croke, B.F.W., Frede, H., Graff, T., Hubrechts, L., Huisman, J.A., Jakeman, A.J., et al., 2009. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Advances in Water Resources 32(2), 147-158. https://doi.org/10.1016/j.advwatres.2008.05.006.
|
| [45] |
Vrugt, J.A., Diks, C.G.H., Clark, M.P., 2008. Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling. Environmental Fluid Mechanics 8, 579-595. https://doi.org/10.1007/s10652-008-9106-3.
|
| [46] |
Wagena, M.B., Goering, D., Collick, A.S., Bock, E., Fuka, D.R., Buda, A., Easton, Z.M., 2020. Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environmental Modelling & Software 126, 104669. https://doi.org/10.1016/j.envsoft.2020.104669.
|
| [47] |
Wang, H., Xiao, W., Zhao, Y., Wang, Y., Hou, B., Zhou, Y., Yang, H., Zhang, X., Cui, H., 2019. The spatiotemporal variability of evapotranspiration and its response to climate change and land use/land cover change in the Three Gorges Reservoir. Water 11(9), 1739. https://doi.org/10.3390/w11091739.
|
| [48] |
Wang, J., Li, Z., Zhou, L., Ma, C., Sun, W., 2025. Ensemble streamflow simulations in a Qinghai-Tibet Plateau Basin using a deep learning method with remote sensing precipitation data as input. Remote Sensing 17(6), 967. https://doi.org/10.3390/rs17060967.
|
| [49] |
Wang, W., Shao, Q., Yang, T., Peng, S., Yu, Z., Taylo, J., Xing, W., Zhao, C., Sun, F., 2013. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stochastic Environmental Research and Risk Assessment 27, 401-421. https://doi.org/10.1007/s00477-012-0615-8.
|
| [50] |
Wang, Z.Y., Qiu, J., Li, F.F., 2018. Hybrid models combining EMD/EEMD and ARIMA for long-term streamflow forecasting. Water 10(7), 853. https://doi.org/10.3390/w10070853.
|
| [51] |
Xu, C., Yuan, C., Li, X., Lin, Y., Fan, H., 2023. Projection of disaster-causing risk of extreme precipitation in the Yangtze River Basin based on CMIP6. Hydrology Research 54(3), 401-417. https://doi.org/10.2166/nh.2023.141.
|
| [52] |
Xu, Z., Zhang, R., 2023. Compound extreme events in Yarlung Zangbo River Basin from 1977 to 2018. Water Science and Engineering 16(1), 36-44. https://doi.org/10.1016/j.wse.2022.08.002.
|
| [53] |
Yu, H., Yang, L., Feng, Q., Barzegar, R., Adamowski, J.F., Wen, X., 2024. Ensemble learning of decomposition-based machine learning models for multistep-ahead daily streamflow forecasting in Northwest China. Hydrological Sciences Journal 69(11), 1501-1522. https://doi.org/10.1080/02626667.2024.2374868.
|
| [54] |
Yuan, X., Wang, Y., Ji, P., Wu, P., Sheffield, J., Otkin J.A., 2023. A global transition to flash droughts under climate change. Science 380, 187-191. https://doi.org/10.1126/science.abn6301.
|
| [55] |
Zhang, J., Liu, P, Wang, H, Lei, X, Zhou, Y., 2015. A Bayesian model averaging method for the derivation of reservoir operating rules. Journal of Hydrology 528, 276-285. https://doi.org/10.1016/j.jhydrol.2015.06.041.
|
| [56] |
Zhang, J., Xiao, H., Fang, H., 2022. Component-based reconstruction prediction of runoff at multi-time scales in the source area of the Yellow River based on the ARMA model. Water Resources Management 36, 433-448. https://doi.org/10.1007/s11269-021-03035-7.
|
| [57] |
Zhang, L., Chen, X., Xin, X., 2019. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Advances in Climate Change Research 15(5), 519-525 (in Chinese). https://doi.org/10.12006/j.issn.1673-1719.2019.082.
|
| [58] |
Zhang, S., Gan, T.Y., Bush, A.B.G., Zhang, G., 2023. Evaluation of the impact of climate change on the streamflow of major pan-Arctic river basins through machine learning models. Journal of Hydrology 619, 129295. https://doi.org/10.1016/j.jhydrol.2023.129295.
|
| [59] |
Zhu, Q., Gao, X., Xu, Y.P., Tian, Y., 2019. Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation. Hydrological Sciences Journal 64(8), 910-920. https://doi.org/10.1080/02626667.2019.1612522.
|