| Citation: | HtayHtay Aung, Min-xi Zhang, Giuseppe Oliveto, Beniamino Onorati, Guo-liang Yu. 2025: Estimation of scour depth at a single non-submerged vertical spur dike under unidirectional currents. Water Science and Engineering, 18(4): 527-536. doi: 10.1016/j.wse.2025.09.002 |
| [1] |
Ahmad, M., 1953. Experiments on design and behavior of spur dikes. In: Proceedings of the International Hydraulics Convention. IAHR, Minneapolis, pp. 145-159.
|
| [2] |
Breusers, H.N.C., Nicollet, G., Shen, H.W., 1977. Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211-252. https://doi.org/10.1080/00221687709499645.
|
| [3] |
Buckingham, E., 1914. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4(4), 345. https://doi.org/10.1103/PhysRev.4.345.
|
| [4] |
Buczynska, E., Szlauer-Lukaszewska, A., Czachorowski, S., Buczynski, P., 2018. Human impact on large Rivers: The influence of groynes of the River oder on larval assemblages of caddisflies (Trichoptera). Hydrobiologia 819(1), 177-195. https://doi.org/10.1007/s10750-018-3636-6.
|
| [5] |
Buffington, J.M., Montgomery, D.R., 1997. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 33(8), 1993-2029. https://doi.org/10.1029/96WR03190.
|
| [6] |
Cardoso, A.H., Bettess, R., 1999. Effects of time and channel geometry on scour at bridge abutments. J. Hydraul. Eng. 125(4), 388-399. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(388).
|
| [7] |
Cardoso, A.H., Santos, J.S., Roca, M., 2002. Effects of flow intensity, obstacle alignment and cross-section geometry on scour at bridge abutments. Int. J. Sediment Res. 17(2), 102-113.
|
| [8] |
Chiew, Y.M., 1995. Mechanics of riprap failure at bridge piers. J. Hydraul. Eng. 121(9), 635-643. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:9(635).
|
| [9] |
Chung, S., Choi, D., Hwang, G., Chung, J., 2020. Effect of design factors for groynes on diversification of topography and restoration of ecosystems in straight and meandering streams. Ecol. Eng. 149, 105764. https://doi.org/10.1016/j.ecoleng.2020.105764.
|
| [10] |
Dey, S., 1999. Sediment threshold. Appl. Math. Model. 23(5), 399-417. https://doi.org/10.1016/S0307-904X(98)10081-1.
|
| [11] |
Dey, S., Barbhuiya, A.K. 2004. Clear-water scour at abutments in thinly armored beds. J. Hydraul. Eng. 130(7), 622-634. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(622).
|
| [12] |
Dey, S., Barbhuiya, A.K., 2005. Time variation of scour at abutments. J. Hydraul. Eng. 131(1), 11-23. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:1(11).
|
| [13] |
Diplas, P., Sutherland, A.J., 1988. Sampling techniques for gravel sized sediments. J. Hydraul. Eng. 114(5), 484-501. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:5(484).
|
| [14] |
Dong, B., Li, Z., Rahman, S.M.M., Vega, R. 2016. A hybrid model approach for forecasting future residential electricity consumption. Energy Build. 117, 341-351. https://doi.org/10.1016/j.enbuild.2015.09.033.
|
| [15] |
Dongol, D.M.S., 1993. Local Scour at Bridge Abutments. University of Auckland, Auckland.
|
| [16] |
Ezzeldin, M.M., Saafan, T.A., Rageh, O.S., Nejm, L.M., 2007. Local scour around spur dikes. In: Proceedings of the Eleventh International Water Technology Conference. IWTC11, Sharm El-Sheikh, pp. 779-795.
|
| [17] |
Fael, C.M.S., Simarro-Grande, G., Martin-Vide, J.P., Cardoso, A.H., 2006. Local scour at vertical-wall abutments under clear-water flow conditions. Water Resour. Res. 42(10), W10408. https://doi.org/10.1029/2005WR004443.
|
| [18] |
Froehlich, D.C., 1989. Local scour at bridge abutments. In: Proceedings of the 1988 National Conference on Hydraulic Engineering. ASCE, New York, pp. 534-539.
|
| [19] |
Gao, D., Pasada, L., Nordin, C.F., 1993. Pier Scour Equations Used in the People's Republic of China. Federal Highway Administration, Washington DC.
|
| [20] |
Gao, Y., Yang, H., Wang, L., Zhao, M., 2022. Three-dimensional numerical investigation on flow behaviors around a diversion dike. Phys. Fluids 34(12), 125119. https://doi.org/10.1063/5.0124003.
|
| [21] |
Garde, R.J., Subramanya, K., Nambudripad, K.D., 1961. Study of scour around spur-dikes. J. Hydraul. Eng. 87(6), 23-37. https://doi.org/10.1061/JYCEAJ.000066.
|
| [22] |
Gaudio, R., De Bartolo, S., Tafarojnoruz, A., 2013. Sensitivity analysis of bridge pier scour depth predictive formulae. J. Hydroinform.15(3), 939-951. https://doi.org/10.2166/hydro.2013.036.
|
| [23] |
Gill, M.A., 1972. Erosion of sand beds around spur dikes. J. Hydraul. Eng. 98(9), 1587-1602. https://doi.org/10.1061/JYCEAJ.0003406.
|
| [24] |
Hager, W.H., Oliveto, G., 2002. Shields' entrainment criterion in bridge hydraulics. J. Hydraul. Eng. 128(5), 538-542. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(538).
|
| [25] |
Hu, K., Ding, P., Wang, Z., Yang, S., 2009. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China. J. Mar. Syst. 77(1-2), 114-136. https://doi.org/10.1016/j.jmarsys.2008.11.014.
|
| [26] |
Husain, D., Quraishi, A.A., Alibrahim, A., 1998. Local scour at bridge abutments. J. King Abdulaziz Univ. Eng. Sci. 10(1), 141-153.
|
| [27] |
Kumar, A., Prabhakar, A.K., 2025. Comparison of stacking, boosting, generalized linear, and neural network models for estimating scour depth around spur-dykes. Iran. J. Sci. Technol. Trans. Civ. Eng. 1-16. https://doi.org/10.1007/s40996-025-01769-7.
|
| [28] |
Lee, S., Sturm, T.W., 2009. Effect of sediment size scaling on physical modeling of bridge pier scour. J. Hydraul. Eng. 135(10), 793-802. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000091.
|
| [29] |
Lehotsky, M., Horackova, S., Rusnak, M., Stefanicka, T., Klen, J., 2024. Morphologic adjustment of a river reach with groynes to channel bypassing. Pure Appl. Geophys. 181(3), 977-1001. https://doi.org/10.1007/s00024-024-03433-z.
|
| [30] |
Lim, S.Y., 1997. Equilibrium clear-water scour around an abutment. J. Hydraul. Eng. 123(3), 237-243. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(237).
|
| [31] |
Liu, H.K., Chang, F.M., Skinner, M.M., 1961. Effect of Bridge Constriction on Scour and Backwater. Colorado State University, Fort Collins.
|
| [32] |
Malik, S., Pal, S.C., 2019. Impact of groyne on channel morphology and sedimentology in an ephemeral alluvial river of Bengal Basin. Environ. Earth Sci. 78(22), 631. https://doi.org/10.1007/s12665-019-8642-0.
|
| [33] |
Melville, B.W., 1992. Local scour at bridge abutments. J. Hydraul. Eng. 118(4), 615-631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615).
|
| [34] |
Melville, B.M., 1997. Pier and abutment scour: Integrated approach. J. Hydraul. Eng. 123(2), 125-136. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125).
|
| [35] |
Misuriya, G., Eldho, T.I., Mazumder, B.S., 2023. Estimation of the local scour around the cylindrical pier over the gravel bed for a low coarseness ratio. Int. J. River Basin Manag. 22(4), 487-497. https://doi.org/10.1080/15715124.2023.2187400.
|
| [36] |
Nagy, H.M., 2004. Maximum depth of local scour near emerged vertical wall spur dike. Alex. Eng. J. 43(6), 819-829.
|
| [37] |
Nasrollahi, A., Ghodsian, M., Neyshabouri, S.A.S., 2008. Local scour at permeable spur dikes. J. Appl. Sci. 8, 3398-3406.
|
| [38] |
Ozyaman, C., Yerdelen, C., Eris, E., Daneshfaraz, R., 2021. Experimental investigation of scouring around a single spur under clear water conditions. Water Supply 22(3), 3484-3497. https://doi.org/10.2166/ws.2021.389.
|
| [39] |
Pandey, M., Ahmad, Z., Sharma, P.K., 2016. Estimation of maximum scour depth near a spur dike. Can. J. Civ. Eng. 43(3), 270-278. https://doi.org/10.1139/cjce-2015-0280.
|
| [40] |
Pandey, M., Ahmad, Z., Sharma, P.K., 2018. Scour around impermeable spur dikes: A review. ISH J. Hydraul. Eng. 24(1), 25-44. https://doi.org/10.1080/09715010.2017.1342571.
|
| [41] |
Pandey, M., Lam, W.H., Cui, Y., Khan, M.A., Singh, U.K., Ahmad, Z., 2019. Scour around spur dike in sand-gravel mixture bed. Water 11(7), 1417. https://doi.org/10.3390/w11071417.
|
| [42] |
Pandey, M., Valyrakis, M., Qi, M., Sharma, A., Lodhi, A.S., 2020. Experimental assessment and prediction of temporal scour depth around a spur dike. Int. J. Sediment Res. 36(1), 17-28. https://doi.org/10.1016/j.ijsrc.2020.03.015.
|
| [43] |
Pandey, M., Jamei, M., Karbasi, M., Ahmadianfar, I., Chu, X., 2021. Prediction of maximum scour depth near spur dikes in uniform bed sediment using stacked generalization ensemble tree-based frameworks. J. Irrigat. Drain. Eng. 147(11), 04021050. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001610.
|
| [44] |
Pandey, M., Jamei, M., Ahmadianfar, I., Karbasi, M., Lodhi, A.S., Chu, X., 2022. Assessment of scouring around spur dike in cohesive sediment mixtures: A comparative study on three rigorous machine learning models. J. Hydrol. 606, 127330. https://doi.org/10.1016/j.jhydrol.2021.127330.
|
| [45] |
Prakash, H., 2010. Velocity approach for incipient motion. ISH J. Hydraul. Eng. 16(2), 47-58.
|
| [46] |
Rajaratnam, N., Nwachukwu, B.A., 1983. Erosion near groyne-like structures. J. Hydraul. Res. 21(4), 277-287. https://doi.org/10.1080/00221688309499434.
|
| [47] |
Singh, B., Minocha, V.K., 2024. Comparative study of machine learning techniques for prediction of scour depth around spur dikes. In: Proceedings of the World Environmental and Water Resources Congress. ASCE, Milwaukee, pp. 635-651. https://doi.org/10.1061/9780784485477.056.
|
| [48] |
Singh, U.K., Jamei, M., Karbasi, M., Malik, A., Pandey, M., 2022. Application of a modern multi-level ensemble approach for the estimation of critical shear stress in cohesive sediment mixture. J. Hydrol. 607, 127549. https://doi.org/10.1016/j.jhydrol.2022.127549.
|
| [49] |
Sun, X., Bi, Y., Karami, H., Naini, S., Band, S.S., Mosavi, A., 2021. Hybrid model of support vector regression and fruitfly optimization algorithm for predicting ski-jump spillway scour geometry. Eng. Appl. Comput. Fluid Mech. 15(1), 272-291. https://doi.org/10.1080/19942060.2020.1869102.
|
| [50] |
Tabassum, R., Guguloth, S., Gondu, V.R. Zakwan, M., 2024. Machine learning-based prediction of scour depth evolution around spur dikes. J. Hydroinform. 6(11), 2815-2836. https://doi.org/10.2166/hydro.2024.160.
|
| [51] |
Ten Brinke, W.B.M., Schulze, F.H., van Der Veer, P., 2004. Sand exchange between groyne-field beaches and the navigation channel of the Dutch Rhine: The impact of navigation versus river flow. River Res. Appl. 20(8), 899-928. https://doi.org/10.1002/rra.809.
|
| [52] |
Yossef, M.F.M., de Vriend, H.J., 2011. Flow details near river groynes: Experimental investigation. J. Hydraul. Eng. 137(5), 504-516. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000326.
|
| [53] |
Zhan, J.M., Wai, W.O., Li, Y.T., Hu, W.Q., Luo, Y.Y., 2024. Velocity field and turbulence structure of the meandering flow produced by alternating deflectors. Sci. Rep. 14(1), 7730. https://doi.org/10.1038/s41598-024-58264-8.
|
| [54] |
Zhang, H., Nakagawa, H., 2008. Scour around spur dyke: Recent advances and future researches. In: Annuals of the Disaster Prevention Research Institute. Kyoto University, Kyoto.
|
| [55] |
Zhang, L., Wang, P., Yang, W., Zuo, W., Gu, X., Yang, X., 2018. Geometric characteristics of spur dike scour under clear-water scour conditions. Water 10(6), 680. https://doi.org/10.3390/w10060680.
|