The single safety factor criteria for slope stability evaluation, derived from the rigid limit equilibrium method or finite element method (FEM), may not include some important information, especially for steep slopes with complex geological conditions. This paper presents a new reliability method that uses sample weight analysis. Based on the distribution characteristics of random variables, the minimal sample size of every random variable is extracted according to a small sample t-distribution under a certain expected value, and the weight coefficient of each extracted sample is considered to be its contribution to the random variables. Then, the weight coefficients of the random sample combinations are determined using the Bayes formula, and different sample combinations are taken as the input for slope stability analysis. According to one-to-one mapping between the input sample combination and the output safety coefficient, the reliability index of slope stability can be obtained with the multiplication principle. Slope stability analysis of the left bank of the Baihetan Project is used as an example, and the analysis results show that the present method is reasonable and practicable for the reliability analysis of steep slopes with complex geological conditions