Citation: | Chuan-zhe Li, Hao WANG, Jia LIU, Deng-hua YAN, Fu-liang YU, Lu ZHANG. 2010: Effect of calibration data length on performance and optimal parameters of hydrological model. Water Science and Engineering, 3(4): 378-393. doi: 10.3882/j.issn.1674-2370.2010.04.002 |
Anctil, F., Perrin, C., and Andréassian, V. 2004. Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling and Software, 19(4), 357-368. [doi: 10.1016/S1364-8152(03)00135-X]
|
Boughton, W. C. 2007. Effect of data length on rainfall-runoff modelling. Environmental Modelling and Software, 22(3), 406-413. [doi: 10.1016/j.envsoft.2006.01.001]
|
Chau, K. W. 2006. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology, 329(3-4), 363-367. [doi: 10.1016/j.jhydrol.2006.02.025]
|
Chiew, F. H. S., Peel, M. C., and Western, A. W. 2002. Application and testing of the simple rainfall-runoff model SIMHYD. Singh, V. P., and Frevert, D. K., eds., Mathematical Models of Small Watershed Hydrology and Applications, 335-367. Littleton:Water resources Publications.
|
Chow, V. T., Maidment, D. R., and Mays, L. W. 1988. Applied Hydrology. New York: McGraw-Hill.
|
Eberhart, R. C., and Kennedy, J. 1995. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43. Piscataway: IEEE Press [doi: 10.1109/MHS.1995.494215]
|
Gan, T. Y., and Biftu, G. F. 1996. Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure. Water Resources Research, 32(12), 3513-3524.
|
Gan, T. Y., Dlamini, E. M., and Biftu, G. F. 1997. Effects of model complexity and structure, data quality, and objective functions on hydrologic modelling. Journal of Hydrology, 192(1-4), 81-103. [doi:10.1016/ S0022-1694(96)03114-9]
|
Gill, M. K., Kaheil, Y. H. Khalil, A., McKee, M. and Bastidas, L. 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42, W07417. [doi:10. 1029/2005WR004528]
|
Harlin, J. 1991. Development of a process oriented calibration scheme for the HBV hydrological model. Nordic Hydrology, 22(1), 15-36.
|
Hogue, S. T., Gupta, H., and Sorooshian, S. 2005. A user-friendly approach to parameter estimation in hydrologic models. Journal of Hydrology, 320(1-2), 1-16. [doi: 10.1016/j.jhydrol.2005.07.009]
|
Lidén, R., and Harlin, J. 2000. Analysis of conceptual rainfall-runoff modelling performance in different climates. Journal of Hydrology, 238(3-4), 231-247. [doi: 10.1016/S0022-1694(00)00330-9]
|
Nash, J. E., and Sutcliffe, J. V. 1970. River forcasting using conceptual models. Part I: A discussion of principles. Journal of Hydrology, 10(3), 280-290. [doi: 10.1016/0022-1694(70)90255-6]
|
Peel, M. C., Chiew, F. H. S., Western, A. W., and McMahon, T. A. 2000. Extension of Unimpaired Monthly Stream Flow Data and Regionalization of Parameter Values to Estimate Stream Flow in Ungauged Catchments (Report to National Land and Water Resources Audit). Parkville: Center For Environmental Application and Hydrology, University of Melbourne.
|
Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and Mathevet, T. 2007. Impact of limited streamflow data on the efficiency and the parameters of rainfall-runoff models. Hydrological Sciences Journal, 52(1), 131-151. [doi: 10.1623/hysj.52.1.131]
|
Priestley, C. H. B., and Taylor, R. J. 1972. On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81-92. [doi:10.1175/1520-0493(1972)100 <0081:OTAOSH>2.3.CO;2]
|
Raupach, M. R., Kirby, J. M., Barrett, D. J., Briggs, P. R., Lu, H., and Zhang, L. 2001. Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (2) Model Formulation and Testing (CSIRO Land and Water Technical Report 41/01). Canberra: Criso Land and Water.
|
Siriwardena, L., Finlayson, B. L., and McMahon, T. A. 2006. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. Journal of Hydrology, 326(1-4), 199-214. [doi: 10.1016/j.jhydrol.2005.10.030]
|
Sorooshian, S., Gupta, V. K., and Fulton, J. L. 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runoff models: Influence of calibration data variability and length on model credibility. Water Resources Research, 19(1), 251-259.
|
Viney, N., Vaze, J., Chiew, F., and Perraud, J. 2008. Regionalisation of runoff generation across the Murray-Darling Basin using an ensemble of two rainfall-runoff models. Proceedings of Water Down Under 2008. Modbury: Engineers Australia.
|
Xia, Y. L., Yang, Z. L., Jackson, C., Stoffa, P. L., and Sen, M. K. 2004. Impacts of data length on optimal parameter and uncertainty estimation of a land surface model. Journal of Geophysical Research- Atmospheres, 109, D07101. [doi: 10.1029/2003JD004419]
|
Yapo, P. O., Gupta, H. V., and Sorooshian, S. 1996. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. Journal of Hydrology, 181(1-4), 23-48. [doi:10.1016/0022-1694(95) 02918-4]
|
Zakermoshfegh, M., Neyshabouri, S. A. A. S., and Lucas, C. 2008. Automatic calibration of lumped conceptual rainfall-runoff model using particle swarm optimization. Journal of Applied Sciences, 8(20), 3703-3708. [doi: 10.3923/jas.2008.3703.3708]
|
Zhang, Y. Q., Chiew, F. H. S., Zhang, L., Leuning, R., and Cleugh, H. A. 2008. Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman-Monteith equation. Water Resources Research, 44, W10420. [doi: 10.1029/2007WR006563]
|