Volume 3 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Shan-hu JIANG, Li-liang REN, Bin YONG, Xiao-li YANG, Lin SHI. 2010: Evaluation of high-resolution satellite precipitation products with surface rainfall over Laohahe Basin in northern China. Water Science and Engineering, 3(4): 405-417. doi: 10.3882/j.issn.1674-2370.2010.04.004
Citation: Shan-hu JIANG, Li-liang REN, Bin YONG, Xiao-li YANG, Lin SHI. 2010: Evaluation of high-resolution satellite precipitation products with surface rainfall over Laohahe Basin in northern China. Water Science and Engineering, 3(4): 405-417. doi: 10.3882/j.issn.1674-2370.2010.04.004

Evaluation of high-resolution satellite precipitation products with surface rainfall over Laohahe Basin in northern China

doi: 10.3882/j.issn.1674-2370.2010.04.004
More Information
  • Corresponding author: Li-liang REN
  • Received Date: 2010-09-26
  • Rev Recd Date: 2010-11-02
  • Three high-resolution satellite precipitation products, Tropical Rainfall Measuring Mission (TRMM) Standard precipitation products (3B42V6 and 3B42RT) and NOAA Climate Precipitation Center (CPC) morphing technique precipitation products (CMORPH), were evaluated against dense surface rain gauge measurements over Laohahe Basin in northern China. Widely used validation statistical indices and categorical statistics were adopted in the study. The evaluations were performed at multiple time scales, ranging from daily to annual, for the years from 2003 to 2008. The results show that all the three satellite precipitation products perform very well in detecting the occurrence of the rainfall events, while there are some different biases in rainfall amount, the 3B42V6 having a bias of 19.6% fits the best with the gauge observations both at daily and monthly scales, while, the biases of 3B42RT and CMORPH (with the values of 78% and 65.7%, respectively) are much higher than a normal receivable threshold. The quality of the satellite precipitation products also have a monthly and yearly variation: 3B42RT has a big positive bias in cold months (Sep. to Mar.), while CMORPH has a big positive bias in warm month (May to Aug.), and they all get the best values in 2006 (with 6%, 41% and -6% biases for the 3B42V6, 3B42RT and CMORPH, respectively). Our evaluation shows that, over the Laohahe Basin, 3B42V6 has the best corresponding with the ground observations , and CMORPH reveals a litter better than 3B42RT. The high errors of the real-time satellite precipitation products (i.e., 3B42RT and CMORPH) reminds us that some new quests for improving the precision of the satellite precipitation products must be proceeded.

     

  • loading
  • Bartier, P. M., and Keller, C. P. 1996. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Computer and Geosciences, 22(7), 795-799. [doi:10.1016/0098 -3004(96)00021-0]
    Chokngamwong, R., and Chiu, L. S. 2008. Thailand daily rainfall and comparison with TRMM products. Journal of Hydrometeorology, 9(2), 256-266. [doi: 10.1175/2007JHM876.1]
    Dinku, T., Ceccato, P., Grover-kopec, E., Lemma, M., Connor, S. J., and Ropelewski, C. F. 2007. Validation of satellite rainfall products over East Africa’s complex topography. International Journal of Remote Sensing, 28(7), 1503-1526. [doi: 10.1080/01431160600954688]
    Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J., and Ropelewski, C. F. 2008. Validation of high-resolution satellite rainfall products over complex terrain. International Journal of Remote Sensing, 29(14), 4097-4110. [doi: 10.1080/01431160701772526]
    Ebert, E. E., Janowiak, J. E., and Kidd, C. 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88(1), 47-64. [doi: 10.1175/BAMS-88-1-47]
    Gottschalck, J., Meng, J., Rodell, M., and Houser, P. 2005. Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. Journal of Hydrometeorology, 6(5), 573-598.
    Hong, Y., Hsu, K. L., Sorooshian, S., and Gao, X. 2004. Precipitation estimation from remotely sensed imagery using artificial neural network-cloud classification system. Journal of Applied Meteorology, 43(12), 1834-1853. [doi: 10.1175/JAM2173.1]
    Hong, Y., Adler, R. F., Hossain, F., Curtis, S., and Huffman, G. J. 2007a. A first approach to global runoff simulation using satellite rainfall estimation. Water Resources Research, 43(8), W08502. [doi:10.1029/ 2006WR005739]
    Hong, Y., Adler, R. F., Negri, A., and Huffman, G. J. 2007b. Flood and landslide applications of near real-time satellite rainfall estimation. Natural Hazards, 43(2), 285-294. [doi: 10.1007/s11069-006-9106-x]
    Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B. 2007. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multi-year, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. [doi: 10.1175/JHM560.1]
    Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487-503.
    Kummerow, C., Barnes, W., Kozu, T., Shi, J., and Simpson, J. 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15, 809-817.
    Nash, J. E., and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models, Part 1: A discussion of principles. Journal of Hydrology, 10(3), 282-290. [doi: 10.1016/0022-1694(70)90255-6]
    Simpson, J., Adler, R. F., and North, G. R. 1988. A proposed tropical rainfall measuring mission (TRMM) satellite. Bulletin of the American Meteorological Society, 69(3), 278-295. [doi:10.1175/1520-0477(1988)         069<0278:APTRMM>2.0.CO;2]
    Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H., Imam, B., and Braithwaite, D. 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorology Society, 81(9), 2035-2046. [doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2]
    Su, F. G., Hong, Y., and Lettenmaier, D. P. 2008. Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin. Journal of Hydrometeorology, 9(4), 622-640. [doi: 10.1175/2007JHM944.1]
    Tian, Y., Peters-Lidard, C. D., Choudhury, B. J., and Garcia, M. 2007. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. Journal of Hydrometeorology, 8(6), 1165-1183. [doi: 10.1175/2007JHM859.1]
    Yong, B., Ren, L. L., Hong, Y., Wang, J. H., Gourley, J. J., Jiang, S. H., Chen, X., and Wang, W. 2010. Hydrologic evaluation of TRMM standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe Basin, China. Water Resources Research, 46, W07542. [doi:10.1029/ 2009WR008965]
    Yu, Z. F., Yu, H., Chen, P. Y., Qian, C. H., and Yue, C. J. 2009. Verification of tropical cyclone-related satellite precipitation estimates in mainland China. Journal of Applied Meteorology and Climatology, 48, 2227-2240. [doi: 10.1175/2009JAMC2143.1]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3112) PDF downloads(3245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return