Volume 5 Issue 3
Sep.  2012
Turn off MathJax
Article Contents
Zhi-jie CHEN, Yong-xue WANG, Hua-yang DONG, Bin-xin ZHENG. 2012: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. Water Science and Engineering, 5(3): 291-303. doi: 10.3882/j.issn.1674-2370.2012.03.005
Citation: Zhi-jie CHEN, Yong-xue WANG, Hua-yang DONG, Bin-xin ZHENG. 2012: Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. Water Science and Engineering, 5(3): 291-303. doi: 10.3882/j.issn.1674-2370.2012.03.005

Time-domain hydrodynamic analysis of pontoon-plate floating breakwater

doi: 10.3882/j.issn.1674-2370.2012.03.005
Funds:  This work was supported by the National Natural Science Foundation of China (Grant No. 51009032), the Scientific Research Foundation of Third Institute of Oceanography, SOA (Grant No. 201003), and the Open Research Fund Program of Hunan Province Key Laboratory of Water, Sediment Science & Flood Hazard Prevention (Grant No. 2010SS03).
More Information
  • Corresponding author: Zhi-jie CHEN
  • Received Date: 2011-07-26
  • Rev Recd Date: 2012-04-26
  • The hydrodynamic behaviors of a floating breakwater consisting of a rectangular pontoon and horizontal plates are studied theoretically. The fluid motion is idealized as two-dimensional linear potential flow. The motions of the floating breakwater are assumed to be two-dimensional in sway, heave, and roll. The solution to the fluid motion is derived by transforming the governing differential equation into the integral equation on the boundary in time domain with the Green’s function method. The motion equations of the floating breakwater are established and solved with the fourth-order Runge-Kutta method to obtain the displacement and velocity of the breakwater. The mooring forces are computed with the static method. The computational results of the wave transmission coefficient, the motion responses, and the mooring forces of the pontoon-plate floating breakwater are given. It is indicated that the relative width of the pontoon is an important factor influencing the wave transmission coefficient of the floating breakwater. The transmission coefficient decreases obviously as the relative width of the pontoon increases. The horizontal plates help to reduce the wave transmission over the floating breakwater. The motion responses and the mooring forces of the pontoon-plate floating breakwater are less than those of the pontoon floating breakwater. The mooring force at the offshore side is larger than that at the onshore side.

     

  • loading
  • Bayram, A. 2000. Experimental study of a sloping float breakwater. Ocean Engineering, 27(4), 445-453. [doi: 10.1016/S0029-8018(98)00080-8]
    Chen, Z. J., Wang, Y. X., Wang, G. Y., and Hou, Y. 2009. Time-domain responses of immersing tunnel element under wave actions. Journal of Hydrodynamics, 21(6), 739-749. [doi: 10.1016/S1001-6058(08)60208-5]
    Diamantoulaki, I., Angelides, D. C., and Manolis, G. D. 2008. Performance of pile-restrained flexible floating breakwaters. Applied Ocean Research, 30(4), 243-255. [doi: 10.1016/j.apor.2009.03.004]
    Diamantoulaki, I., and Angelides, D. C. 2010. Analysis of performance of hinged floating breakwaters. Engineering Structures, 32(8), 2407-2423. [doi: 10.1016/j.engstruct.2010.04.015]
    Diamantoulaki, I., and Angelides, D. C. 2011. Modeling of cable-moored floating breakwaters connected with hinges. Engineering Structures, 33(5), 1536-1552. [doi: 10.1016/j.engstruct.2011.01.024]
    Dong, G. H., Zheng, Y. N., Li, Y. C., Teng, B., Guan, C. T., and Lin, D. F. 2008. Experiments on wave transmission coefficients of floating breakwaters. Ocean Engineering, 35(8-9), 931-938. [doi: 10.1016/j.oceaneng. 2008.01.010]
    Dong, H. Y. 2009. Study on Hydrodynamic Characteristics of Pontoon-plates Type Floating Breakwaters.   Ph. D. Dissertation. Dalian: Dalian University of Technology. (in Chinese).
    Dong, H. Y., Wang, Y. X., Hou, Y., and Zhao, Y. P. 2009. Experimental study on the hydrodynamic characteristic of box-type floating breakwater. Fishery Modernization, 36(3), 7-11. (in Chinese)
    Drimer, N., Agnon, Y., and Stiassnie, M. 1992. Simplified analytical model for a floating breakwater in water of finite depth. Applied Ocean Research, 14(1), 33-41. [doi: 10.1016/0141-1187(92)90005-5]
    Gesraha, M. R. 2006. Analysis of п shaped floating breakwater in oblique waves, I: Impervious rigid wave boards. Applied Ocean Research, 28(5), 327-338. [doi: 10.1016/j.apor.2007.01.002]
    Ikesue, S., Tamura, K., Sugi, Y., Takaki, M., Kihara, K., and Matsuura, M. 2002. Study on the performance of a floating breakwater with two boxes. Proceedings of the Twelfth (2002) International Offshore and Polar Engineering Conference, 773-778. Kitakyushu: The International Society of Offshore and Polar Engineers.
    Koo, W. 2009. Numerical analysis of pneumatic damping effect on a motion-constraint floating breakwater. Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, 177-181. Honolulu: ASME. [doi: 10.1115/OMAE2009-79286]
    Liang, N. K, Huang, J. S, and Li, C. F. 2004. A study of spar buoy floating breakwater. Ocean Engineering, 31(1), 43-60. [doi: 10.1016/S0029-8018(03)00107-0]
    Liu, Y., Li, Y. C., and Teng, B. 2009. Wave motion over two submerged layers of horizontal thick plates. Journal of Hydrodynamics, 21(4), 453-462. [doi: 10.1016/S1001-6058(08)60171-7]
    Matsunaga, N., Hashida, M., Uzaki, K., Kanzaki, T., and Uragami, Y. 2002. Performance of wave absorption by a steel floating breakwater with truss structure. Proceedings of the Twelfth (2002) International Offshore and Polar Engineering Conference, 768-772. Kitakyushu: The International Society of Offshore and Polar Engineers.
    Mccartney, B. L. 1985. Floating breakwater design. Journal of Waterway, Port, Coastal, and Ocean Engineering, 111(2), 304-318.
    Mizutani, N, and Rahman, M. A. 2006. Performance of submerged floating breakwater supported by perforated plates under wave action and its dynamics. Briggs, M. J., and McCormick, M. E., eds., Civil Engineering in the Ocean VI: Proceedings of the International Conference, 329-341. Baltimore: American Society of Civil Engineers. [doi: 10.1061/40775(182)26)]
    Sannasiraj, S. A., Sundar, V., and Sundarvadivelu, R. 1998. Mooring forces and motion responses of pontoon-type floating breakwaters. Ocean Engineering, 25(1), 27-48. [doi:10.1016/S0029-8018(96) 00044-3]
    Wang, H. Y., and Sun, Z. C. 2010. Experimental study of a porous floating breakwater. Ocean Engineering, 37(5-6), 520-527. [doi: 10.1016/j.oceaneng.2009.12.005]
    Wang, Y. X., Dong, H. Y., Zheng, K., Liu, C., and Hou, Y. 2009. Experimental study of wave attenuation performance of vertical pile-restrained pontoon-plates floating breakwater. Journal of Dalian University of Technology, 49(3), 432-437. (in Chinese)
    Williams, A. N., and Abul-azm, A. G. 1997. Dual pontoon floating breakwater. Ocean Engineering, 24(5), 465-478. [doi: 10.1016/S0029-8018(96)00024-8]
    Xing, Z. Z., and Zhang, R. X. 1996. A type of floating breakwater for lowering long-crested wave transmissivity for deep water application. Journal of Dalian University of Technology, 36(2), 246-247. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2784) PDF downloads(4862) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return