Citation: | Yi-feng ZHANG, Rui-jie LI. 2012: Numerical solutions for two nonlinear wave equations. Water Science and Engineering, 5(4): 410-418. doi: 10.3882/j.issn.1674-2370.2012.04.005 |
Berkhoff, J. C. W., Booij, N., and Radder, A. C. 1982. Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3), 255-279.[doi:10.1016/0378-3839(82) 90022-9]
|
Canney, N. E., and Carter, J. D. 2007. Stability of plane waves on deep water with dissipation. Mathematics and Computers in Simulation, 74(2-3), 159-167. [doi: 10.1016/j.matcom.2006.10.010]
|
Dysthe, K. B. 1979. Note on a modification to the nonlinear Schröedinger equations for application to deep water waves. Proceedings of the Royal Society of London, Series A: Mathematical Physical and Engineering Sciences, 369(1736), 105-114. [doi: 10.1098/rspa.1979.0154]
|
Hsu, T. W., Chang, J. Y., Lan, Y. J., Lai, J. W., and Ou, S. H. 2008. A parabolic equation for wave propagation over porous structures. Coastal Engineering, 55(12), 1148-1158. [doi: 10.1016/j.coastaleng.2008.05.004]
|
Keller, J. B. 1982. Experiments on Nonlinear Wave Interaction. California: Stanford University.
|
Kirby, J. T., and Dalrymple, R. A. 1983. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying topography. Journal of Fluid Mechanics,136(1), 453-466. [doi:10.1017/ S0022112083002232]
|
Li, R. J., Yan, Y. X., and Cao, H. S. 2003. Nonlinear dispersion relation in wave transformation. China Ocean Engineering,17(1), 117-122.
|
Lin, G., Qiu, D. H., and Zou, Z. L. 1998. Numerical simulation of parabolic mild-slope equations. Journal of Dalian University of Technology, 38(3), 328-331. (in Chinese)
|
Lo, E., and Mei, C. C. 1987. Slow evolution of nonlinear deep water waves in two horizontal directions: A numerical study. Wave Motion, 9(3), 245-259. [doi: 10.1016/0165-2125(87)90014-X]
|
Onorato, M., Osborne, A. R. Serio, M., and Bertone, S. 2001. Freak waves in random oceanic sea states. Physical Review Letters,86(25), 5831-5834. [doi: 10.1103/PhysRevLett.86.5831]
|
Radder, A. C. 1979. On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95, 159-176. [doi: 10.1017/S0022112079001397]
|
Scott, A. C., Chu, F. Y. F., and Mclaughlin, D. W. 1973. The soliton: A new concept in applied science. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference, 61(10), 1443-1483. [doi: 10.1109/PROC.1973.9296]
|
Tang, J., Shen, Y. M., and Cui, L. 2011. Modeling coastal water wave propagation in vegetation field based on parabolic mild slope equation. Acta Oceanologica Sinica,33(1), 8-11. (in Chinese)
|
Trulsen, K., and Stansberg, C. T. 2001. Spatial evolution of water surface waves: Numerical simulation and experiment of bichromatic waves. Proceedings of the Eleventh (2001) International Offshore and Polar Engineering Conference. Stavanger: The International Society of Offshore and Polar Engineers.
|
Zhang, Y. Q., Zhang, N. C., andHu, J. P.2007a. Numerical simulation and mechanism analysis of freak waves. Acta Oceanologica Sinica,26(5), 16-124.
|
Zhang, Y. Q., Zhang, N. C., and Pei, Y. G. 2007b. Numerical simulation of freak waves based on the four-order nonlinear Schrödinger equation. China Ocean Engineering, 21(2), 207-214.
|
Zhao, H. J., Song, Z. Y., Xu, F. M., and Li, R. J. 2009. A time-dependent numerical model of the extended mild-slope equation. Journal of Hydrodynamics,Ser. A, 24(4), 503-511. (in Chinese)
|