Citation: | Xiao-meng SONG, Fan-zhe KONG, Che-sheng ZHAN, Ji-wei HAN, Xin-hua ZHANG. 2013: Parameter identification and global sensitivity analysis of Xinanjiang model using meta-modeling approach. Water Science and Engineering, 6(1): 1-17. doi: 10.3882/j.issn.1674-2370.2013.01.001 |
Campolongo, F., Tarantola, S., and Saltelli, A. 1999. Tackling quantitatively large dimensionality problems. Computer Physics Communications, 117(1-2), 75-85. [doi: 10.1016/S0010-4655(98)00165-9]
|
Campolongo, F., Cariboni, J., and Saltelli, A. 2007. An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software, 22(10), 1509-1518. [doi:10.1016/j.envsoft. 2006.10.004]
|
Cheng, C. T., Zhao, M. Y., Chau, K. W., and Wu, X. Y. 2006. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4), 129-140. [doi: 10.1016/j.jhydrol.2005.04.022]
|
Doksum, K., and Samarov, A. 1995. Nonparametric estimation global functional and a measure of the explanatory power of covariates in regression. The Annals of Statistics, 23(5), 1443-1473. [doi:10.1214/ aos/1176324307]
|
Elsawwaf, M., Willems, P., and Feyen, J. 2010. Assessment of the sensitivity and prediction uncertainty of evaporation models applied to Nasser Lake, Egypt. Journal of Hydrology, 395(1-2), 10-22. [doi: 10.1016/j.jhydrol.2010.10.002]
|
Frey, H. C., and Patil, S. R. 2002. Identification and review of sensitivity analysis methods. Risk Analysis, 22(3), 553-578. [doi: 10.1111/0272-4332.00039]
|
Friedman, J. H. 1991. Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-67. [doi: 10.1214/aos/1176347963]
|
Haan, C. T., Allred, B., Storm, D. E., Sabbagh, G. J., and Prabhu, S. 1995. Statistical procedure for evaluating hydrologic/water quality models. Transactions of the American Society of Agricultural and Biological Engineers, 38(3), 725-733.
|
Kleijnen, J., and Sargent, R. G. 2000. A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120(1), 14-29. [doi: 10.1016/S0377-2217(98)00392-0]
|
Kong, F. Z., Song, X. M., Zhan, C. S., and Ye, A. Z. 2011. An efficient quantitative sensitivity analysis approach for hydrological model parameters using RSMSobol method. Acta Geographica Sinica, 66(9), 1270-1280. (in Chinese)
|
Li, H. X., Zhang, Y. Q., Chiew, F. H. S., and Xu, S. G. 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1-4), 155-162. [doi:10. 1016/j.jhydrol.2009.03.003]
|
Madsen, H. 2000. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235(3-4), 276-288. [doi: 10.1016/s0022-1694(00)00279-1]
|
Makler-Pick, V., Gal, C., Gorfine, M., Hipsey, M. R., and Carmel, Y. 2011. Sensitivity analysis for complex ecological models: A new approach. Environmental Modelling and Software, 26(2), 124-134. [doi: 10.1016/j.envsoft.2010.06.010]
|
Marrel, A., Looss, B., Laurent, B., and Roustant, O. 2009. Calculations of Sobol indices for the Gaussian process metamodel. Reliability Engineering and System Safety, 94(3), 742-751. [doi: 10.1016/j.ress.2008.07.008]
|
McKay, M. D. 1993. Evaluating Prediction Uncertainty. Los Alams: Los Alams National Laboratory.
|
Meyers, R. H., and Montgomery, D. C. 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 2nd Ed. New York: John Wiley & Sons.
|
Mohammed, F. A., Chen, Q. B., and Hamed, N. 2010. Uncertainty Analysis of Xinanjiang Model using the Monte Carlo Analysis Toolbox. http://www.paper.edu.cn/index.php/default/en_releasepaper/content/ 40971 [Retrieved Sep. 05, 2011 ]
|
Morris, M. D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174.
|
Muñoz-Carpena, R., Zajac, Z., and Kuo, Y. M. 2007. Global sensitivity and uncertainty analysis of the water quality model VFSMOD-W. Transactions of the American Society of Agricultural and Biological Engineers, 50(5), 1719-1732.
|
Quirós, E., Felicísimo, Á. M., and Cuartero, A. 2009. Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors, 9(11), 9011-9028. [doi: 10.3390/s91109011]
|
Ratto, M., Pagano, A., and Young, P. 2007. State dependent parameter metamodelling and sensitivity analysis. Computer Physics Communications, 177(11), 863-876. [doi: 10.1016/j.cpc.2007.07.011]
|
Ren, Q. W., Chen, Y. B., and Shu, X. J. 2010. Global sensitivity analysis of Xinanjiang model parameter based on Extend FAST method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 49(3), 127-134. (in Chinese)
|
Saltelli, A., Chan, K., and Scott, E. M. 2000. Sensitivity Analysis: Gauging the Worth of Scientific Models. West Sussex: John Wiley & Sons.
|
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. West Sussex: John Wiley & Sons.
|
Sathyanarayanamurthy, H., and Chinnam, R. B. 2009. Metamodels for variable importance decomposition with applications to probabilistic engineering design. Computers and Industrial Engineering, 57(3), 996-1007. [doi: 10.1016/j.cie.2009.04.003]
|
Shi, P., Chen, C., Srinivasan, R., Zhang, X. S., Cai, T., Fang, X. Q., Qu, S. M., Chen, X., and Li, Q. F. 2011. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resources Management, 25(10), 2595-2612. [doi: 10.1007/s11269-011-9828-8]
|
Sobol’, I. M. 1976. Uniformly distributed sequences with additional uniformly properties. USSR Computational Mathematics and Mathematical Physics, 16(5), 236-242. [doi:10.1016/0041-5553 (76)90154-3]
|
Sobol’, I. M. 1998. On quasi-Monte Carlo integrations. Mathematics and Computers in Simulation, 47(2-5), 103-122. [doi: 10.1016/S0378-4754(98)00096-2]
|
Song, X. M., Kong, F. Z., and Zhu, Z. X. 2011a. Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering, 4(1), 1-12. [doi:10.3882/j.issn. 1674-2370.2011.01.001]
|
Song, X. M., Zhan, C. S., Kong, F. Z., and Xia, J. 2011b. A review on uncertainty analysis of large-scale hydrological cycle modeling system. Acta Geographica Sinica, 66(3), 396-406. (in Chinese)
|
Song, X. M., Zhan, C. S., Kong, F. Z., and Xia, J. 2011c. Advances in uncertainty quantification of large-scale hydrological system modeling. Journal of Geographical Sciences, 21(5), 801-819. [doi:10.1007/ s11442-011-0811-2]
|
Song, X. M., Kong, F. Z., Zhan, C. S., and Han, J. W. 2012a. Hybrid optimization rainfall-runoff simulation based on Xinanjiang model and artificial neural network. Journal of Hydrologic Engineering, 17(9), 1033-1041. [doi: 10.1061/(ASCE)HE.1943-5584.0000548]
|
Song, X. M., Kong, F. Z., Zhan, C. S., and Han, J. W. 2012b. Sensitivity analysis of hydrological model parameters using a statistical theory approach. Advances in Water Science, 23(5), 642-649. (in Chinese)
|
Song, X. M., Zhan, C. S., and Xia, J. 2012c. Integration of a statistical emulator approach with the SCE-UA method in parameter optimization of a hydrological model. Chinese Science Bulletin, 57(26), 3397-3403. [doi: 10.1007/s11434-012-5305-x]
|
Song, X. M., Zhan, C. S., Xia, J., and Kong, F. Z. 2012d. An efficient global sensitivity analysis approach for distributed hydrological model. Journal of Geographical Sciences, 22(2), 209-222, [doi:10.1007/s11442- 012-0922-5]
|
Storlie, C. B., Swiler, L. P., Helton, J. C., and Sallaberry, C. J. 2009. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliability Engineering and System Safety, 94(11), 1735-1763. [doi: 10.1016/j.ress.2009.05.007]
|
Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K. 2007a. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences, 11(2), 793-817. [doi: 10.5194/hess-11-793-2007]
|
Tang, Y., Reed, P., van Werkhoven, K., and Wagener, T. 2007b. Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis. Water Resources Research, 45, W06415. [doi: 10.1029/2006WR005813]
|
van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and Srinivasan, R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment model. Journal of Hydrology, 324(1-4), 10-23. [doi: 10.1016/j.jhydrol.2005.09.008]
|
Warmink, J. J., Janssen, J. A. E. B., Booij, M. J., and Krol, M. S. 2010. Identification and classification of uncertainties in the application of environmental models. Environmental Modelling and Software, 25(12), 1518-1527. [doi: 10.1016/j.envsoft.2010.04.011]
|
Xu, C., and Gertner, G. 2007. Extending a global sensitivity analysis technique to models with correlated parameters. Computational Statistics and Data Analysis, 51(12), 5579-5590. [doi:10.1016/j.csda. 2007.04.003]
|
Xu, C., and Gertner, G. 2011. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST). Computational Statistics and Data Analysis, 55(1), 184-198. [doi:10. 1016/j.csda.2010.06.028]
|
Yang, J. 2011. Convergence and uncertainty analysis in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, 26(4), 444-457. [doi: 10.1016/j.envsoft.2010.10.007]
|
Zhan, C. S., Song, X. M., Xia, J., and Tong, C. 2013. An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environmental Modelling and Software, 41, 39-52. [doi: 10.1016/j.envsoft.2012.10.009]
|
Zhao, R. J., and Wang, P. L. 1988. Parameter analysis for Xinanjiang model. Journal of China Hydrology, (6), 2-9. (in Chinese)
|
Zhao, R. J. 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]
|
Zhao, R. J., and Liu, X. R. 1995. The Xinanjiang model. Singh, V. P., ed., Computer Models of Watershed Hydrology, 215-232. Colorado: Water Resources Publications.
|