Volume 6 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
Ming-wei MA, Li-liang REN, Song-bai SONG, Jia-li SONG, Shan-hu JIANG. 2013: Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data. Water Science and Engineering, 6(1): 18-30. doi: 10.3882/j.issn.1674-2370.2013.01.002
Citation: Ming-wei MA, Li-liang REN, Song-bai SONG, Jia-li SONG, Shan-hu JIANG. 2013: Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data. Water Science and Engineering, 6(1): 18-30. doi: 10.3882/j.issn.1674-2370.2013.01.002

Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data

doi: 10.3882/j.issn.1674-2370.2013.01.002
Funds:  This work was supported by the Program of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No. B08048) and the Special Basic Research Fund for Methodology in Hydrology of the Ministry of Sciences and Technology of China (Grant No. 2011IM011000).
More Information
  • Corresponding author: Li-liang REN
  • Received Date: 2011-12-02
  • Rev Recd Date: 2012-04-21
  • The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt’s transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.

     

  • loading
  • Berg, D., and Bakken, H. 2005. A Goodness-of-fit Test for Copulae based on the Probability Integral Transform. Oslo: Department of Mathematics, University of Oslo.
    Berkowitz, J. 2001. Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19(4), 465-474. [doi: 10.1198/07350010152596718]
    Breymann, W., Dias, A., and Embrechts, P. 2003. Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 3(1), 1-14. [doi: 10.1080/713666155]
    Chowdhary, H., Escobar, L. A., and Singh, V. P. 2011. Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrology Research, 42(2-3), 193-216. [doi: 10.2166/nh.2011.065]
    Demarta, S., and McNeil, A. J. 2005. The t copula and related copulas. International Statistical Review, 73(1), 111-129. [doi: 10.1111/j.1751-5823.2005.tb00254.x]
    Diebold, F. X., Gunther, T. A., and Tay, A. S. 1998. Evaluating density forecasts with applications to financial risk management. International Economic Review, 39(4), 863-883. [doi: 10.2307/2527342]
    Diebold, F. X., Hahn, J., and Tay, A. S. 1999. Multivariate density forecast and calibration in financial risk management: High-frequency returns on foreign exchange. The Review of Economics and Statistics, 81(4), 661-673. [doi: 10.1162/003465399558526]
    Dobri?, J., and Schmid, F. 2005. Testing goodness of fit for parametric families of copulas: Application to financial data. Communications in Statistics — Simulation and Computation, 34(4), 1053-1068. [doi: 10.1080/03610910500308685]
    Dobri?, J., and Schmid, F. 2007. A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis, 51(9), 4633-4642. [doi: 10.1016/j.csda.2006.08.012]
    Evin, G., and Favre, A. C. 2008. A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resources Research, 44, W03433. [doi: 10.1029/2007WR006054]
    Fang, H. B., Fang, K. T., and Kotz, S. 2002. The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82(1), 1-16. [doi: 10.1006/jmva.2001.2017]
    Fermanian, J. D. 2005. Goodness of fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119-152. [doi: 10.1016/j.jmva.2004.07.004]
    Fisher, N. I., and Switzer, P. 1985. Chi-plots for assessing dependence. Biometrika, 72(2), 253-265.
    Fisher, N. I., and Switzer, P. 2001. Graphical assessment of dependence: Is a picture worth 100 tests? American Statistician, 55(3), 233-239.
    Frees, E. W., Carriere, J., and Valdez, E. 1996. Annuity valuation with dependent mortality. The Journal of Risk and Insurance, 63(2), 229-261.
    Genest, C., and Rivest, L. P. 1993. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034-1043. [doi:10.1080/01621459.1993. 10476372]
    Genest, C., Quessy, J. F., and Rémillard, B. 2006. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33(2), 337-366. [doi:10.1111/ j.1467-9469.2006.00470.x]
    Genest, C., Rémillard, B., and Beaudoin, D. 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2), 199-213. [doi: 10.1016/j.insmatheco.2007.10.005]
    Grimaldi, S., and Serinaldi, F. 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155-1167. [doi: 10.1016/j.advwatres.2005.09.005]
    Junker, M., and May, A. 2005. Measurement of aggregate risk with copulas. Econometrics Journal, 8(3), 428-454. [doi: 10.1111/j.1368-423X.2005.00173.x]
    Ma, M. W., and Song, S. B. 2010. Elliptical copulas for drought characteristics analysis of Xi’an gauging station. Journal of China Hydrology, 30(4), 36-42. (in Chinese)
    Ma, M. W., Song, S. B., Ren, L. L., Jiang, S. H., and Song, J. L. 2012. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrological Processes, published online at http://onlinelibrary.wiley.com/doi/10.1002/hyp.8432/abstract on April 17, 2012 [doi: 10.1002/hyp.8432]
    Malevergne, Y., and Sornette, D. 2003. Testing the Gaussian copula hypothesis for financial asset dependences. Quantitative Finance, 3(4), 231-250. [doi: 10.1088/1469-7688/3/4/301]
    Mendes, B. V. M., and Souza, R. M. 2004. Measuring financial risks with copulas. International Review of Financial Analysis, 13(1), 27-45. [doi: 10.1016/j.irfa.2004.01.007]
    Nadarajah, S. 2006. Fisher information for the elliptically symmetric Pearson distributions. Applied Mathematics and Computation, 178(2), 195-206. [doi: 10.1016/j.amc.2005.11.037]
    Nelsen, R. B. 1999. An Introduction to Copulas. New York: Springer.
    Panchenko, V. 2005. Goodness-of-fit test for copulas. Physica A, 355, 176-182. [doi:10.1016/j.physa. 2005.02.081]
    Rosenblatt, M. 1952. Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23(3), 470-472.
    Shiau, J. T. 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), 795-815. [doi: 10.1007/s11269-005-9008-9]
    Sklar, A. 1959. Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231. (in French)
    Song, S. B., and Singh, V. P. 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, 24(3), 425-444. [doi:10.1007/ s00477-009-0331-1]
    Wang, X. J., Gebremichael, M., and Yan, J. 2010. Weighted likelihood copula modeling of extreme rainfall events in Connecticut. Journal of Hydrology, 390(1-2), 108-115. [doi: 10.1016/j.jhydrol.2010.06.039]
    ?e?ula, I. 2009. On multivariate Gaussian copulas. Journal of Statistical Planning and Inference, 139(11), 3942-3946. [doi: 10.1016/j.jspi.2009.05.039]
    Zhang, L., and Singh, V. P. 2007. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431-439. [doi: 10.1061/(ASCE)1084-0699(2007)12:4(431)]
    Zhang, Q., Chen, Y. Q., Chen, X. H., and Li, J. F. 2011. Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering, 16(7), 598-607. [doi: 10.1061/(ASCE)HE.1943-5584.0000350]
    Zhang, Q., Li, J. F., and Singh, V. P. 2012. Application of Archimedean copulas in the analysis of the precipitation extremes: Effects of precipitation changes. Theoretical and Applied Climatology, 107(1-2), 255-264. [doi: 10.1007/s00704-011-0476-y]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2484) PDF downloads(3826) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return